Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (12): 40-46.doi: 10.13560/j.cnki.biotech.bull.1985.2014.12.007
• Review • Previous Articles Next Articles
Zhao Tingfeng, Gong Guoli
Received:
2014-05-12
Online:
2014-12-08
Published:
2014-12-12
Zhao Tingfeng, Gong Guoli. Myxobacteria :Natural Pharmaceutical Factories[J]. Biotechnology Bulletin, 2014, 0(12): 40-46.
[1] Davies J, Ryan KS. Introducing the parvome: bioactive compounds in the microbial world[J]. ACS Chem Biol, 2012, 7(2):252-259. [2] Mishra BB, Tiwari VK. Natural products: an evolving role in future drug discovery[J]. Eur J Med Chem, 2011, 46(10):4769-4807. [3] Newman DJ, Cragg GM. Natural products as sources of new drugs over 147 the 30 years from 1981 to 2010[J]. J Nat Prod, 2012, 75 (3):311-335. [4] Gerth K, Pradella S, Perlova O, et al. Myxobacteria: proficient producers of novel natural products with various biological activities -past and future biotechnological aspects with the focus on the genus Sorangium[J]. J. Biotechnol, 2003(106):233-253. [5] Bode HB, Muller R. Analysis of myxobacterial secondary metabolism goes molecular[J]. J Ind Microbiol Biotechnol, 2006, 33(7): 577-588. [6] Weissman KJ, Muller R. Myxobacterial secondary metabolites: bioactivities and modes-of-action[J]. Nat Prod Rep, 2010, 27(9): 1276-1295. [7] Gentzsch J, Hinkelmann B, Kaderali L, et al. Hepatitis C virus complete life cycle screen for identification of small molecules with pro-or antiviral activity[J]. Antiviral Res, 2011, 89(2):136-148. [8] Nickeleit I, Zender S, Sasse F, et al. Argyrin a reveals a critical role for the tumor suppressor protein p27(kip1)in mediating antitumor activities in response to proteasome inhibition[J]. Cancer Cell, 2008, 14(1):23-35. [9] Juana Diez1, Javier PM, Jordi M, et al. Myxobacteria: natural pharmaceutical factories[J]. Microbial Cell Factories, 2012, 11 (52):1-3. [10] Reichenbach H. Myxobacteria, producers of novel bioactive substances[J]. J Ind Microbiol Biotechnol, 2001, 27(3):149-156. [11] Velicer GJ, Vos M. Sociobiology of the myxobacteria[J]. Annu Rev Microbiol, 2009(6):599-623. [12] Kaiser D. Coupling cell movement to multicellular development in myxobacteria[J]. Nat Rev, 2003, 1(1):45-54. [13] Nan B, Chen J, Neu JC, et al. Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force[J]. Proc Natl Acad Sci USA, 2011, 108(6):2498-2503. [14] Xiao Y, Wei X, Ebright R, et al. Antibiotic production by myxobacteria plays a role in predation[J]. J Bacteriol, 2011, 193 (18):4626-4633. [15] Berleman JE, Kirby JR. Deciphering the hunting strategy of a bacterial wolfpack[J]. FEMS Microbiol Rev, 2009, 33(5): 942-957. [16] Schneiker S, Perlova O, Kaiser O, et al. Complete genome sequence of the myxobacterium Sorangium cellulosum[J]. Nat Biotechnol, 2007, 25(11):1281-1289. [17] Bon RS, Waldmann H. Bioactivity-guided navigation of chemical space[J]. Acc Chem Res, 2010, 43(8):1103-1114. [18] Weissman KJ, Muller R. A brief tour of myxobacterial secondary metabolism[J]. Bioorg Med Chem, 2009, 17(6):2121-2136. [19] Rix U, Fischer C, Remsing LL, et al. Modification of post-PKS tailoring steps through combinatorial biosynthesis[J]. Nat Prod Rep, 2002, 19(5):542-580. [20] Davies J, Spiegelman GB, Yim G. The world of subinhibitory antibiotic concentrations[J]. Curr Opin Microbiol, 2006, 9(5): 445-453. [21] Bode HB, Muller R. The impact of bacterial genomics on natural product research[J]. Angew Chem Int Ed, 2005, 44(42): 6828-6846. [22] Bentley SD, Chater KF, Cerdeno-Tarraga AM, et al. Complete [33] Lee FYF, Borzilleri R, Fairchild CR, et al. BMS-247550: a novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor activity[J]. Clin Cancer Res, genome sequence of the model actinomycete Streptomyces 2001(, 7):1429-1437. coelicolor[J]. Nature, 2002, 417(6885):141-147. [23] Ikeda H, Ishikawa J, Hanamoto A, et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomy-ces avermitilis[J]. Nat Biotechnol, 2003, 21(5):526-531. [24] Giannakakou P, Gussio R, Nogales E, et al. A common pharmacop-hore for epothilone and taxanes: molecular basis for drug resistan-ce conferred by tubulin mutations in human cancer cells[J]. Proc Natl Acad Sci USA, 2000(97):2904-2909. [25] Nettles JH, Li H, Cornett B, et al. The binding mode of epothilone A on alpha-, beta-tubulin by electron crystallography[J]. Science, 2004(5):866-869. [26] Verrills NM, Flemming CL, Liu M, et al. Microtubule alterations and mutations induced by desoxyepothilone B: implications for drug-target interaction[J]. Chem Biol, 2003(10):597-607. [27] Chou TC, O’Connor OA, Tong WP, et al. The synthesis, discovery, and development of a highly promising class of microtubule stabilization agents: curative effects of desoxyepothilones B and F against human tumour xenografts in nude mice[J]. Proc Natl Acad Sci USA, 2001(98):8113-8118. [28] Bode CJ, Gupta ML, Reiff EA, et al. Epothilone and paclitaxel: unexpected differences in promoting the assembly and stabilization of yeast microtubules[J]. Biochemistry, 2002(41):3870-3874. [29] Lee FY, Smykla R, Johnston K, et al. Preclinical efficacy spectrum and pharmacokinetics of ixabepilone[J]. Cancer Chemother Pharmacol, 2009,(63):201-212 [30] Mekhail T, Chung C, Holden S, et al. Phase I trial of novel epothilone B analog BMS-310705 IV q 21 days[J]. Proc Am Soc Clin Oncol, 2003(22):129(abstract 515). [31] Sessa C, Perotti A, Malossi A, et al. Phase I and pharmacokinetic (PK)study of the novel epothilone BMS-310705 in patients(pts) with advanced solid cancer[J]. Proc Am Soc Clin Oncol, 2003(2):130(abstract 519). [32] Wartmann M, Altmann KH. The biology and medicinal chemistry of epothilones[J]. Curr Med Chem Anticancer Agents, 2002(2): 123-148. [34] Sessa C, Perotti A, Lladò A, et al. Phase I clinical study of the novel epothilone B analogue BMS-310705 given on a weekly schedule[J]. Ann Oncol, 2007(18):1548-1553. [35] Nicolaou KC, Winssinger N, Pastor J, et al. Synthesis of epothilones A and B in solid and solution phase[J]. Nature, 1997(387): 268-272. [36] Nicolaou K, Roschangar F, Vourloumis D. Chemistry and biology of epothilone[J]. Angew Chem, 1998(110):2120-2153. [37] Nicolaou KC, King NP, Finlay MR, et al. Total synthesis of epothilone E and related side chain modified analogs via a Stille coupling based strategy[J]. Bioorg Med Chem, 1999, 7: 665-697. [38] Su DS, Horwitz SB, et al. Total synthesis of(3)-epothilone B: an extension of the Suzuki coupling method and insights into structure activity relationships of the epothilones[J]. Angew Chem Int Ed Engl, 1999, 36: 757-759. [39] Yang Z, He Y, Vourloumis D, et al. Total synthesis of epothilone A: the ole ¢ n metathesis approach[J]. Angew Chem Int Ed Engl, 1997, 36: 166-168. [40] Sawada D, Shibasaki M. Enantioselective total synthesis of epothilone A using multifunctional asymmetric catalyses[J]. Angew Chem Int Ed, 2000, 39: 209-213. [41] Nicolaou KC, He Y, Roschangar F, et al. Total synthesis of epothilone E and analogues with modified side chains through the Stille coupling reaction[J]. Angew Chem Int Ed Engl, 1998, 37: 84-87. [42] Gerth K, Bedorf N, H?fle G, et al. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (myxobacteria)-production, physico-chemical and biological properties[J]. J Antibiot, 1996, 49: 560-564. [43] Gerth K, Steinrich H, Hofle G, et al. Studies on the biosynthesis of epothilones: the biosynthetic origin of the carbon skeleton[J]. J Antibiotics, 2000, 53: 1373-1377. [44] Tang L, Shah S, Chung L, et al. Cloning and heterologous expression of the epothilone gene cluster[J]. Science, 2000(287):640-642. [45] Julien B, Shah S. Heterogonous expression of epothilone biosynthetic genes in Myxococcus xanthus[J]. Antimicrob Agents Chemother, 2002, 46: 2772-2778. [46] Lau J, Frykman S, Regentin R, et al. Optimizing the heterologous production of Epothilone D in Myxococcus xanthus[J]. Biotechnol Bioeng, 2002, 78: 280-288. [47] Arslanian RL, Tang L, Blough S, et al. A new cytotoxic epothilone from modified polyketide synthases heterologously expressed in Myxococcus xanthus[J]. J Nat Prod, 2002, 65: 1061-1064. [48] Gerth K, Washausen P, H?fle G, et al. The jerangolids: A family of new antifungal compounds from Sorangium cellulosum (myxobacteria). production, physico-chemical and biological properties of jerangolid A[J]. J Antibiot, 1996, 49: 71-75. [49] Mahmud T, Bode HB, Silakowski B, et al. A novel biosynthetic pathway providing precursors for fatty acid biosynthesis and secondary metabolite formation in myxobacteria[J]. J Biol Chem, [55] 龚国利 , 陈松 , 李慧 , 等 . 基因组重组技术选育埃博霉素 B 高 产菌株[J]. 中国抗生素杂志 , 2013, 38(2):106-110. [56] 龚国利 , 陈松 , 李慧 , 曾桥 . 改良 Genome shuffling 技术选育埃 博霉素 B 高产菌株[J]. 中国酿造 , 2012, 31(11):42-45. [57] Gong GL, Jia L, Li H.Preparation and adsorption properties of mixed-templates molecularly imprinted polymers of epothilone B[J]. J ChemPharm Res, 2014, 6(3):1421-1427. [58] 龚国利 , 陈松 , 李慧 . 一种埃博霉素 B 的发酵生产工艺:中国 , ZL 201110346091.0[P] . 2012-3-14. [59] 龚国利 , 王娜 , 刘丽丽.响应面法优化纤维堆囊菌 SoF5-76 产埃博霉素 B 发酵培养基[J].生物技术通报 , 2014(1): 171-176. [60] 龚国利 , 贾琳 , 黄菲菲 , 许重要 . 微生物合成抗癌药物埃博 霉素的研究进展[J]. 中国新药杂志 , 2009, 18(16):1515-1520. [61] 龚国利 , 刘丽丽 . 多孔陶瓷吸附固定纤维堆囊菌发酵制备埃博 2002(, 277), 23768-32774. 霉素[J]. 中国生物工程杂志 , 2014, 34(3):109-114. [50] Bollag DM, McQueney PA, Zhu J, et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action[J]. Cancer Res, 1995, 55: 2325-2333. [51] Wang JD, Zhang H, Ying LP, et al. Five new epothilone metabolites from Sorangium cellulosum strain So0157-2[J]. The Journal of Antibiotics, 2009(62):483-487. [52] 龚国利 . 黏细菌的 Genome shuffling 育种技术及其抗癌药物埃 博霉素的高产改造[D] . 济南: 山东大学 , 2007. [53] Gong GL, Sun X, Liu XL, et al. Mutation of Sorangium cellulosum and a high-throughput screening method for improving the production of Epothilones[J]. J Ind Microbio Biot, 2007, 34: 615-623. [54] 龚国利 , 孙欣 , 刘新利 , 李越中 . Genome shuffling 提高黏细菌 产生埃博霉素的能力[C] , 中国微生物学会全国会员代表大 会及学术年会论文摘要集 , 2006: 78. [62] 龚国利 , 刘丽丽 , 王娜 , 用于吸附固定纤维堆囊菌的硅藻土基 多孔陶瓷制备[J]. 现代化工 , 2013, 33(11):66-70. [63] Hong J. Role of natural product diversity in chemical biology[J]. Curr Opin Chem Biol, 2011, 15(3):350-354. [64] Scheller N, Mina LB, Galao RP, et al. Translation and replication of hepatitis C virus genomic RNA depends on ancient cellular proteins that control mRNA fates[J]. Proc Natl Acad Sci USA, 2009, 106 (32):13517-13522. [65] Noueiry AO, Diez J, Falk SP, et al. Yeast Lsm1p-7p/Pat1p deadenylation-dependent mRNA-decapping factors are required for brome mosaic virus genomic RNA translation[J]. Mol Cell Biol, 2003, 23(12):4094-4106. |
[1] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
[2] | WANG Nan, SU Yu, LIU Wen-jie, FENG Ming, MAO Yu, ZHANG Xin-guo. Research Progress on Active Compounds Against Drug-resistant Microorganism from Plant Endophytes [J]. Biotechnology Bulletin, 2021, 37(8): 263-274. |
[3] | LIANG Zhen-ting, TANG Ting. Effects of Endophytes on Biosynthesis of Secondary Metabolites and Stress Tolerance in Plants [J]. Biotechnology Bulletin, 2021, 37(8): 35-45. |
[4] | ZHAO Jiang-hua, FANG Huan, ZHANG Da-wei. Research Progress in Biosynthesis of Secondary Metabolites of Microorganisms [J]. Biotechnology Bulletin, 2020, 36(11): 141-147. |
[5] | WANG Xue-han, MA Qiang, TIAN Yuan, HU Jing, LIU Hui-rong. Cultivable Myxobacteria and Their Antibiotic Activities in the Hulun Buir Area of Inner Mongolia [J]. Biotechnology Bulletin, 2019, 35(9): 224-233. |
[6] | XU Jie ,HUANG Jian-zhong, LI Li. Summary of Genomics Mining Technology and Its Research Progress in Fungi [J]. Biotechnology Bulletin, 2019, 35(11): 201-207. |
[7] | LIN Hai-zhou, CHEN Zhou-qin WANG Yan GUO Jun ZHU Hong-hui DENG Ming-rong. Mining the Cryptic Bioactive Secondary Metabolites from Streptomyces vietnamensis Using a‘Tree-Removal’Strategy [J]. Biotechnology Bulletin, 2017, 33(9): 145-152. |
[8] | Wei Zhiwen,Sun Yong, Wang Fei. The Production of Phenolic Compounds of Inonotus obliquus by Fungal Elicitor Introducing and Its Study of Biochemical Mechanism [J]. Biotechnology Bulletin, 2014, 0(9): 136-141. |
[9] | Song Kai, Hu Jie, Lin Wenhan, Ji Yubin,. Studies on Diversity of Sponges-associated Fungi and Their Secondary Metabolites [J]. Biotechnology Bulletin, 2014, 0(4): 36-42. |
[10] | Dai Fangping, Li Shiweng. Progress on the Secondary Metabolites and Applications of Streptomyces [J]. Biotechnology Bulletin, 2014, 0(3): 30-35. |
[11] | Huang Yan, Hu Jianwei, Zhu Honghui, . Effects of Co-culture with Helper Bacteria on the Secondary Metabolites of Myxococcus fulvus [J]. Biotechnology Bulletin, 2013, 0(5): 184-189. |
[12] | Xu Wen, Xu Ran, Zhang Liping. Isolation and Identification of PQQ Producing Strains Using Methanol-utilizing Bacteria [J]. Biotechnology Bulletin, 2013, 0(1): 162-165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||