Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (11): 201-207.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0170
Previous Articles Next Articles
XU Jie ,HUANG Jian-zhong, LI Li
Received:
2019-03-04
Online:
2019-11-26
Published:
2019-11-19
XU Jie ,HUANG Jian-zhong, LI Li. Summary of Genomics Mining Technology and Its Research Progress in Fungi[J]. Biotechnology Bulletin, 2019, 35(11): 201-207.
[1] Harismendy O, Ng PC, Strausberg RL, et al. Evaluation of next generation sequencing platforms for population targeted sequencing studies[J]. Genome Biology, 2009, 10(3):R32-R32. [2] Ikeda H. Natural products discovery from micro-organisms in the post-genome era[J]. Bioscience Biotechnology and Biochemistry, 2017, 81(1):13-22. [3] Winsor GL, Griffiths EJ, Lo R, et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database[J]. Nucleic Acids Research, 2016, 44(Database issue):D646-D653. [4] Mckay IA. Molecular strategies for overcoming antibiotic resistance in bacteria[J]. Molecular Medicine Today, 2000, 6(8):309-314. [5] Campbell WC, Fisher MH, Stapley EO, et al. Ivermectin:a potent new antiparasitic agent[J]. Science, 1983, 221(4613):823-8. [6] Bachmann BO, Lanen SGV, Baltz RH. Microbial genome mining for accelerated natural products discovery:is a renaissance in the making?[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(2):175-184. [7] Choi SS, Kim HJ, Lee HS, et al. Genome mining of rare actinomycetes and cryptic pathway awakening[J]. Process Biochemistry, 2015, 50(8):1184-1193. [8] Challis GL. Genome mining for novel natural product discovery[J]. J Med Chem, 2008, 51(9):2618-2628. [9] Zerikly M, Challis GL. Strategies for the discovery of new natural products by genome mining[J]. Chembiochem, 2010, 10(4):625-633. [10] Cobb RE, Wang Y, Zhao H. High-efficiency multiplex genome editing of\r, Streptomyces\r, species using an engineered CRISPR/Cas system[J]. ACS Synthetic Biology, 2015, 4(6):723-728. [11] Sun Y, Tomura T, Sato J, et al. Isolation and biosynthetic analysis of Haliamide, a new PKS-NRPS hybrid metabolite from the marine myxobacterium Haliangium ochraceum[J]. Molecules, 2016, 21(1):59. [12] Tang X, Li J, Millánagui?aga N, et al. Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining[J]. Acs Chemical Biology, 2015, 10(12):2841. [13] 孙欣, 高莹, 杨云锋. 环境微生物的宏基因组学研究新进展[J]. 生物多样性, 2013, 21(4):393-400. [14] Levin BJ, Huang YY, Peck SC, et al. A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-L-proline[J]. Science, 2017. 355(6325). [15] Bode HB, Bethe B, H?fs R, et al. Big effects from small changes:possible ways to explore nature's chemical diversity[J]. Chembiochem, 2015, 3(7):619-627. [16] Scherlach K, Hertweck C. Discovery of aspoquinolones A-D, prenylated quinoline-2-one alkaloids from Aspergillus nidulans, motivated by genome mining[J]. Organic & Biomolecular Chemistry, 2006, 4(18):3517-3520. [17] Shwab EK, Jin WB, Tribus M, et al. Histone deacetylase activity regulates chemical diversity in Aspergillus[J]. Eukaryotic Cell, 2007, 6(9):1656. [18] Kawai K, Wang G, Okamoto S, et al. The rare earth, scandium, causes antibiotic overproduction in Streptomyces spp.[J]. FEMS Microbiology Letters, 2007, 274(2):311-315. [19] Laureti L, Song L, Huang S, et al. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15):6258-6263. [20] Molloy B, Ye S, Bra?a AF, et al. Identification by genome mining of a type I polyketide gene cluster from Streptomyces argillaceus involved in the biosynthesis of pyridine and piperidine alkaloids argimycins P[J]. Front Microbiol, 2017, 8(e22028):194. [21] 刘玲, 朱湘成, 黄勇. 微生物核糖体工程在抗生素研发中的应用[J]. 中国感染控制杂志, 2016, 15(5):355-360. [22] Tanaka Y, Kasahara K, Hirose Y, et al. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance(rpoB)mutations in actinomycetes[J]. Journal of Bacteriology, 2013, 195(13):2959-2970. [23] 陈林, 王增亮, 赵群飞, 等. 林可霉生物合成基因簇中调控基因lmbU的功能研究[J]. 化学与生物功能, 2011, 28(11):37-41. [24] Dong Y, Cui CB, Li CW, et al. Activation of dormant secondary metabolite production by introducing neomycin resistance into the Deep-sea fungus, Aspergillus versicolor ZBY-3[J]. Marine Drugs, 2014, 12(8):4326-4352. [25] Yi L, Cui CB, Li CW, et al. Chromosulfine, a novel cyclopentachro-mone sulfide produced by a marine-derived fungus after introduc-tion of neomycin resistance[J]. Rsc Advances, 2016, 6(50):43975-43979. [26] 刘辉, 张兰威, 易华西, 等. 抗菌肽异源表达的研究进展[J]. 食品工业科技, 2016, 37(12):380-384. [27] 姜天一, 朱平. 丝状真菌异源蛋白表达系统研究进展[J]. 生物技术通讯, 2007, 18(6):1050-1052. [28] Punt PJ. Filamentous fungi as cell factories for protein produc-tion[J]. Trends Biotechnol, 2002, 20(5):200-206. [29] 黄颖, 赵晨, 关雄, 等. 微生物源化合物合成基因簇异源表达研究进展[J]. 中国粮油学报, 2015, 30(9):133-138. [30] 杨海泉, 刘龙, 李江华, 等. 微生物酶高效异源表达策略的最新研究进展[J]. 食品科学, 2013, 34(9):351-357. [31] Wang C, Zhang J, Wu H, et al. Heterologous gshF gene expression in various vector systems in Escherichia coli for enhanced glutathione production[J]. Journal of Biotechnology, 2015, 214:63-68. [32] 黄开华, 吴莹莹, 唐庆九, 等. 蛹虫草中异源表达天蚕菌素抗菌肽[J]. 食用菌学报, 2018(4):24-28. [33] Saha S, Zhang W, Zhang G, et al. Activation and characterization of a cryptic gene cluster reveals a cyclization cascade for polycyclic tetramate macrolactams[J]. Chemical Science, 2017, 8(2):1607. [34] 李强, 刘军, 周东坡, 等. 植物内生菌的开发与研究进展[J]. 生物技术通报, 2006(3):33-37. [35] 郑维发. 真菌代谢产物的药物发现——资源、问题和策略[J]. 菌物学报, 2011, 30(2):151-157. [36] Shu N, Takemoto K, Kamisuki S, et al. Anti-hepatitis C Virus Natural Product from a Fungus, Penicillium herquei[J]. Journal of Natural Products, 2016, 79(2):442. [37] Chiba T, Asami Y, Suga T, et al. Herquline A, produced by Penicillium herquei FKI-7215, exhibits anti-influenza virus properties[J]. Journal of the Agricultural Chemical Society of Japan, 2016, 81(1):1-4. [38] Tansakul C, Rukachaisirikul V, Maha A, et al. A new phenalenone derivative from the soil fungus Penicillium herquei PSU-RSPG93[J]. Natural Product Research, 2014, 28(20):1718-1724. [39] Arunpanichlert J, Rukachaisirikul V, Phongpaichit S, et al. Meroterpenoid, isocoumarin, and phenol derivatives from the seagrass-derived fungus Pestalotiopsis sp. PSU-ES194[J]. Tetrahedron, 2015, 71(5):882-888. [40] Klaiklay S, Rukachaisirikul V, Tadpetch K, et al. Chlorinated chromone and diphenyl ether derivatives from the mangrove-derived fungus Pestalotiopsis sp. PSU-MA69[J]. Tetrahedron, 2012, 68(10):2299-2305. [41] Uchoa PK, Pimenta AT, Braz-Filho R, et al. New cytotoxic furan from the marine sediment-derived fungi Aspergillus niger[J]. Natural Product Research, 2017, 31(22):1. |
[1] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
[2] | WANG Nan, SU Yu, LIU Wen-jie, FENG Ming, MAO Yu, ZHANG Xin-guo. Research Progress on Active Compounds Against Drug-resistant Microorganism from Plant Endophytes [J]. Biotechnology Bulletin, 2021, 37(8): 263-274. |
[3] | LIANG Zhen-ting, TANG Ting. Effects of Endophytes on Biosynthesis of Secondary Metabolites and Stress Tolerance in Plants [J]. Biotechnology Bulletin, 2021, 37(8): 35-45. |
[4] | ZHAO Jiang-hua, FANG Huan, ZHANG Da-wei. Research Progress in Biosynthesis of Secondary Metabolites of Microorganisms [J]. Biotechnology Bulletin, 2020, 36(11): 141-147. |
[5] | WANG Jin-xiu, ZHANG Qi, DING Wei, CHEN Tuo. Classic Post-translational Modification in Ribosomally Synthesized and Post-translationally Modified Peptides Biosynthesis [J]. Biotechnology Bulletin, 2020, 36(10): 215-225. |
[6] | YAO Cai-miao, ZHAO Wen-ya, WANG Bu-qing, ZHENG Li-yan, ZHANG Li-ping, LIU Hong-wei. Pan-Genome Analysis and Secondary Metabolic Pathway Mining of Bacillus circulans [J]. Biotechnology Bulletin, 2019, 35(10): 130-136. |
[7] | LIN Hai-zhou, CHEN Zhou-qin WANG Yan GUO Jun ZHU Hong-hui DENG Ming-rong. Mining the Cryptic Bioactive Secondary Metabolites from Streptomyces vietnamensis Using a‘Tree-Removal’Strategy [J]. Biotechnology Bulletin, 2017, 33(9): 145-152. |
[8] | Wei Zhiwen,Sun Yong, Wang Fei. The Production of Phenolic Compounds of Inonotus obliquus by Fungal Elicitor Introducing and Its Study of Biochemical Mechanism [J]. Biotechnology Bulletin, 2014, 0(9): 136-141. |
[9] | Song Kai, Hu Jie, Lin Wenhan, Ji Yubin,. Studies on Diversity of Sponges-associated Fungi and Their Secondary Metabolites [J]. Biotechnology Bulletin, 2014, 0(4): 36-42. |
[10] | Dai Fangping, Li Shiweng. Progress on the Secondary Metabolites and Applications of Streptomyces [J]. Biotechnology Bulletin, 2014, 0(3): 30-35. |
[11] | Zhao Tingfeng, Gong Guoli. Myxobacteria :Natural Pharmaceutical Factories [J]. Biotechnology Bulletin, 2014, 0(12): 40-46. |
[12] | Huang Yan, Hu Jianwei, Zhu Honghui, . Effects of Co-culture with Helper Bacteria on the Secondary Metabolites of Myxococcus fulvus [J]. Biotechnology Bulletin, 2013, 0(5): 184-189. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 703
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 380
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||