Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (6): 1-7.doi: 10.13560/j.cnki.biotech.bull.1985.2015.06.001
• Review • Next Articles
Niu Xulong, Feng Wanjun, Ma Jinhu, Xing Guofang
Received:
2014-06-06
Online:
2015-06-19
Published:
2015-06-20
Niu Xulong, Feng Wanjun, Ma Jinhu, Xing Guofang. Research Progress on Biological Functions of Long Non-coding RNA in Plants[J]. Biotechnology Bulletin, 2015, 31(6): 1-7.
[1] 陈润生. 非编码 RNA[J]. Progress in Biochemistry and Biophy-sics, 2013, 40(7):591-592. [2]Matsui A, Ishida J, Morosawa T, et al. Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array[J]. Plant and Cell Physiology, 2008, 49(8):1135-1149. [3]Bai Y, Dai X, Harrison AP, Chen M. RNA regulatory networks in animals and plants:a long noncoding RNA perspective[J]. Briefings in Functional Genomics, 2015, 14(2):91-101. [4]Esteller M. Non-coding RNAs in human disease[J]. Nature Reviews Genetics, 2011, 12(12):861-874. [5] Dieci G, Fiorino G, Castelnuovo M, et al. The expanding RNA poly-merase III transcriptome[J]. Trends Genet, 2007, 23:614-622. [6]Wu J, Okada T, Fukushima T, et al. A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis[J]. RNA Biol, 2012, 9:302-313. [7]Managadze D, Rogozin IB, Chernikova D, et al. Negative correlation between expression level and evolutionary rate of long intergenic noncoding RNAs[J]. Genome Biol Evol, 2011, 3:1390-1404. [8] Moran VA, Perera RJ, Khalil AM. Emerging functional and mechan-istic paradigms of mammalian long non-coding RNAs[J]. Nucleic Acids Research, 2012, 40(14):6391-6400. [9]谢兆辉. 天然反义转录物及其调控基因的表达机制[J]. 遗传, 2010, 32(2):122-128. [10] Chen D, Yuan C, Zhang J, et al. PlantNATsDB:a comprehensive database of plant natural antisense transcripts[J]. Nucleic Acids Research, 2012, 40(D1):D1187-D1193. [11] Yin Y, Zhao Y, Wang J, et al. antiCODE:a natural sense-antisense transcripts database[J]. BMC Bioinformatics, 2007, 8:319. [12] Prasanth KV, Spector DL. Eukaryotic regulatory RNAs:an answer to the ‘genome complexity’conundrum[J]. Genes & Development, 2007, 21(1):11-42. [13] Lindsey S, Raghavendra C, Sivalingam KM. Data gathering algorithms in sensor networks using energy metrics[J]. IEEE Transactions on Parallel and Distributed Systems, 2002, 13(9):924-935. [14] Lapidot M, Pilpel Y. Genome-wide natural antisense transcription:coupling its regulation to its different regulatory mechanisms[J]. EMBO Reports, 2006, 7(12):1216-1222. [15] 李灵, 宋旭. 长链非编码RNA在生物体中的调控作用[J]. 遗传, 2014, 36(3):228-236. [16]夏天, 肖丙秀, 郭俊明. 长链非编码 RNA 的作用机制及其研究方法[J]. 遗传, 2013, 35(3):269-280. [17] De Lucia F, Dean C. Long non-coding RNAs and chromatin regula-tion[J]. Curr Opin Plant Biol, 2011, 14(2):168-173. [18]Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation[J]. Molecular Cell, 2010, 39(6):925-938. [19]Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136(4):629-641. [20]Ponjavic J, Ponting CP, Lunter G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs[J]. Genome Research, 2007, 17(5):556-565. [21] Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II[J]. Nat Struct Mol Biol, 2007, 14(2):103-105. [22] Liu J, Jung C, Xu J, et al. Genome-wide analysis uncovers regula-tion of long intergenic noncoding RNAs in Arabidopsis[J]. The Plant Cell Online, 2012, 24(11):4333-4345. [23]Zhang M, Zhao H, Xie S, et al. Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm[J]. Proc Natl Acad Sci USA, 2011, 108(50):20042-20047. [24]Boerner S, McGinnis KM. Computational identification and functional predictions of long noncoding RNA in Zea mays[J]. PloS One, 2012, 7(8):e43047. [25]Lindberg D, de la Fuente Revenga M, Widersten M. Temperature and pH dependence of enzyme-catalyzed hydrolysis of trans-methylstyrene oxide. A unifying kinetic model for observed hysteresis, cooperativity, and regioselectivity[J]. Biochemistry, 2010, 49(10):2297-2304. [26] Swiezewski S, Liu F, Magusin A, et al. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target[J]. Nature, 2009, 462(7274):799-802. [27] Ding J, Lu Q, Ouyang Y, et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice[J]. Proc Natl Acad Sci USA, 2012, 109(7):2654-2659. [28] Zhou H, Liu Q, Li J, et al. Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA[J]. Cell Research, 2012, 22(4):649-660. [29] Dai XY, Yu JJ, Zhao Q, et al. Non-coding RNA for ZM401, a pollen-specific gene of Zea mays[J]. Acta Botanica Sinica-English Edition, 2004, 46(4):497-504. [30] Ma J, Yan B, Qu Y, et al. Zm401, a short‐open reading-frame mRNA or noncoding RNA, is essential for tapetum and microspore development and can regulate the floret formation in maize[J]. Journal of Cellular Biochemistry, 2008, 105(1):136-146. [31] Xin M, Wang Y, Yao Y, et al. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing[J]. BMC Plant Biology, 2011, 11(1):61. [32] Amor BB, Wirth S, Merchan F, et al. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses[J]. Genome Research, 2009, 19(1):57-69. [33] Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs:insights into functions[J]. Nat Rev Genet, 2009, 10:155-159. [34] Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA[J]. Science, 2011, 331(6013):76-79. [35] Franco-Zorrilla JM, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nature Genetics, 2007, 39(8):1033-1037. [36] Wierzbicki AT, Haag JR, Pikaard CS. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes[J]. Cell, 2008, 135(4):635-648. [37] Jabnoune M, Secco D, Lecampion C, et al. A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness[J]. The Plant Cell Online, 2013, 25(10):4166-4182. [38] Gómez G, Pallás V. Viroids:a light in the darkness of the lncRNA-directed regulatory networks in plants[J]. New Phytologist, 2013, 198(1):10-15. [39] Hirsch J, Lefort V, Vankersschaver M, et al. Characterization of 43 non-protein-coding mRNA genes in Arabidopsis, including the MIR162a-derived transcripts[J]. Plant Physiology, 2006, 140(4):1192-1204. [40] 祁云霞, 刘永斌, 荣威恒. 转录组研究新技术:RNA-Seq 及其应用[J]. 遗传, 2011, 33(11):1191-1202. [41] Kim TK, Hemberg M, Gray JM, et al. Widespread transcription at neuronal activity-regulated enhancers[J]. Nature, 2010, 465(7295):182-187. [42] Kim ED, Sung S. Long noncoding RNA:unveiling hidden layer of gene regulatory networks[J]. Trends in Plant Science, 2012, 17(1):16-21. [43] ?rom UA, Derrien T, Beringer M, et al. Long noncoding RNAs with enhancer-like function in human cells[J]. Cell, 2010, 143(1):46-58. [44] Tsai MC, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes[J]. Science, 2010, 329(5992):689-693. [45] 白晶, 李力恒, 孙尧, 等. 传统中草药高通量测序技术 RNA-seq 及 lncRNA 挖掘的应用策略[J]. 中医药信息, 2014(2):20-23. [46] Qi X,Xie S,Liu Y, et al. Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response tosimulated drought stress by deep sequencing[J]. Plant Mol Biol,2013,83(4-5):459-473. [47] Hall Q, Cannon MC. The cell wall hydroxyproline-rich glycoprotein RSH is essential for normal embryo development in Arabidopsis[J]. Plant Cell, 2002, 14(5):1161-1172. [48] Deepak S, Shailasree S, Kini RK, et al. Role of hydroxyproline-rich glycoproteins in resistance of pearl millet against downy mildew pathogen Sclerospora graminicola[J]. Planta, 2007, 226(2):323, 333. [49] Carrieri C, Cimatti L, Biagioli M, et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat[J]. Nature, 2012, 491(7424):454-457. |
[1] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[2] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[3] | LV Yu-jing, WU Dan-dan, KONG Chun-yan, YANG Yu, GONG Ming. Genome-wide Identification of XTH Gene Family and Their Interacting miRNAs and Possible Roles in Low Temperature Adaptation in Jatropha curcas L. [J]. Biotechnology Bulletin, 2023, 39(2): 147-160. |
[4] | YIN Guo-ying, LIU Chang, CHANG Yong-chun, YU Wang-jie, WANG Bing, ZHANG Pan, GUO Yu-shuang. Identification of the Cysteine Protease Family and Corresponding miRNAs in Nicotiana tabacum L. and Their Responses to PVY [J]. Biotechnology Bulletin, 2023, 39(10): 184-196. |
[5] | WANG Nan-nan, WANG Wen-jia, ZHU Qiang. Research Progress of microRNAs in Plant Stress Responses [J]. Biotechnology Bulletin, 2022, 38(8): 1-11. |
[6] | LIU Chao, CHU Hong-long, WU Li-fang, TANG Li-zhou, HAN Li-hong. Regulation Mechanism of Phosphate Homeostasis in Plants [J]. Biotechnology Bulletin, 2022, 38(2): 184-194. |
[7] | DONG Hai-jiao, YANG Xiao-yu, MO Bei-xin, CHEN Xue-mei, CUI Jie. Research Progress in NAD+ Cap Modification at the 5' End of RNA [J]. Biotechnology Bulletin, 2022, 38(2): 245-251. |
[8] | LI Xiao-fan, GENG Dan-dan, BI Yu-lin, JIANG Yong, WANG Zhi-xiu, CHANG Guo-bin, CHEN Guo-hong, BAI Hao. Research Progress in Unconventional miRNA Functions [J]. Biotechnology Bulletin, 2022, 38(12): 1-10. |
[9] | ZHAO Jie, LI An, LIANG Gang, JIN Xin-xin, PAN Li-gang. Research Progress in the Biological Functions of Plant circRNAs [J]. Biotechnology Bulletin, 2022, 38(10): 1-9. |
[10] | WANG Zhi-shan, LI Ni, WANG Wei-ping, LIU Yang. Research Progress in Endophytic Bacteria in Rice Seeds [J]. Biotechnology Bulletin, 2022, 38(1): 236-246. |
[11] | HE Xiao-li, GUO Lei-zhou, HAN Jia-hui, TANG Yin, YUAN Yuan, DAI Qi-lin, PING Shu-zhen, JIANG Shi-jie. Research Progress on Bacterial Periplasmic Chaperone LolA [J]. Biotechnology Bulletin, 2021, 37(8): 275-283. |
[12] | CHEN Li-jie, YANG Fan, FAN Hai-yan, ZHAO Di, WANG Yuan-yuan, ZHU Xiao-feng, LIU Xiao-yu, DUAN Yu-xi. Advances of Non-coding RNA in Interactions Among Biocontrol Bacteria and Plant Nematodes and Host [J]. Biotechnology Bulletin, 2021, 37(7): 65-70. |
[13] | LUO Wei, MU Qiong, SHU Jian-hong, WU Jia-hai, WANG Xiao-li. Expression,Protein Interactions and Biological Function Analysis of FaFT in Festuca arundinacea [J]. Biotechnology Bulletin, 2021, 37(4): 8-17. |
[14] | XUE Xiang-lan, DING Yang-yang, LIU Yue, LI Xiao-bo, JIANG Lin, HE Xiao-hong, MA Yue-hui, ZHAO Qian-jun. Research Progress on Biological Function Growth and Development Related to N6-methyladenosine in Mammals [J]. Biotechnology Bulletin, 2021, 37(4): 251-259. |
[15] | ZHANG Cui-ju, MO Bei-xin, CHEN Xue-mei, CUI Jie. Advances on the Molecular Action Mechanisms of Plant miRNA [J]. Biotechnology Bulletin, 2020, 36(7): 1-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||