Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (11): 38-46.doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.005
• Orginal Article • Previous Articles Next Articles
WEN Xia, ZHOU Shao-lu, YANG Xiu-jiang, SUN Ting-li, XIE Xiao-bao
Received:
2016-03-25
Online:
2016-11-25
Published:
2016-11-11
WEN Xia, ZHOU Shao-lu, YANG Xiu-jiang, SUN Ting-li, XIE Xiao-bao. Research Progress on Polysaccharide-degrading Enzymes from Marine Microorganism[J]. Biotechnology Bulletin, 2016, 32(11): 38-46.
[1] Legin E, Ladrat C, Godfroy A, et al. Thermostable amylolytic enzymes of thermophilic microorganisms from deep-sea hydrothermal vents[J]. Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie, 1997, 320(11):893-898. [2] Zhang JW, Zeng RY. Psychrotrophic amylolytic bacteria from deep sea sediment of Prydz Bay, Antarctic:diversity and characterization of amylases[J]. World Journal of Microbiology and Biotechnology, 2007, 23(11):1551-1557. [3] Qin Y, Huang Z, Liu Z. A novel cold-active and salt-tolerantα-amylase from marine bacterium Zunongwangia profunda:molecular cloning, heterologous expression and biochemical characterization[J]. Extremophiles, 2014, 18(2):271-281. [4] Taylor LE, Henrissat B, Coutinho PM, et al. Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T[J]. Journal of Bacteriology, 2006, 188(11):3849-3861. [5] 徐庆强, 张志明, 王延明, 等. 产碱性纤维素酶海洋细菌的筛选, 鉴定及酶学性质研究[J]. 海洋科学, 2009, 33(7):1-5. [6] Trivedi N, Gupta V, Kumar M, et al. Solvent tolerant marine bacterium Bacillus aquimaris secreting organic solvent stable alkaline cellulase[J]. Chemosphere, 2011, 83(5):706-712. [7] Lee BH, Kim BK, Lee YJ, et al. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53[J]. Enzyme and Microbial Technology, 2010, 46(1):38-42. [8] Horn SJ, Sikorski P, Cederkvist JB, et al. Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides[J]. Proceedings of the National Academy of Sciences, 2006, 103(48):18089-18094. [9] Bhattacharya D, Nagpure A, Gupta RK. Bacterial chitinases:properties and potential[J]. Critical Reviews in Biotechnology, 2007, 27(1):21-28. [10] 王晓辉, 赵勇, 赵小明, 等. 海洋低温几丁质酶菌株筛选、鉴定及酶谱分析[J]. 西北农业学报, 2014, 23(9):92-97. [11] García-Fraga B, Da Silva AF, López-Seijas J, et al. Functional expression and characterization of a chitinase from the marine archaeon Halobacterium salinarum CECT 395 in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2014, 98(5):2133-2143. [12] Yang S, Fu X, Yan Q, et al. Cloning, expression, purification and application of a novel chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii[J]. Food Chemistry, 2016, 192:1041-1048. [13] 马芮萍, 朱艳冰, 倪辉, 等. 一株产琼胶酶细菌的分离、鉴定及其琼胶酶基本性质[J], 微生物学报, 2015, 54(5):543-551. [14] Lin B, Lu G, Zheng Y, et al. Gene cloning, expression and characterization of a neoagarotetraose-producingβ-agarase from the marine bacterium Agarivorans sp. HZ105[J]. World Journal of Microbiology and Biotechnology, 2012, 28(4):1691-1697. [15] Long M, Yu Z, Xu X. A novel β-agarase with high pH stability from marine Agarivorans sp. LQ48[J]. Marine Biotechnology, 2010, 12(1):62-69. [16] Yang M, Mao X, Liu N, et al. Purification and characterization of two agarases from Agarivorans albus OAY02[J]. Process Biochemistry, 2014, 49(5):905-912. [17] Liu N, Mao X, Du Z, et al. Cloning and characterisation of a novel neoagarotetraose-forming-β-agarase, AgWH50A from Agarivorans gilvus WH0801[J]. Carbohydrate Research, 2014(388):147-151. [18] Liu N, Mao X, Yang M, et al. Gene cloning, expression and characterisation of a newβ-agarase, AgWH50C, producing neoagarobiose from Agarivorans gilvus WH0801[J]. World Journal of Microbiology and Biotechnology, 2014, 30(6):1691-1698. [19] Prajapati VD, Maheriya PM, Jani GK, et al. Carrageenan:a natural seaweed polysaccharide and its applications[J]. Carbohydrate Polymers, 2014(105):97-112. [20] Liu Z, Li G, Mo Z, et al. Molecular cloning, characterization, and heterologous expression of a newκ-carrageenase gene from marine bacterium Zobellia sp. ZM-2[J]. Applied Microbiology and Biotechnology, 2013, 97(23):10057-10067. [21] Li J, Hu Q, Seswita-Zilda D. Purification and characterization of a thermostable -carrageenase from a hot spring bacterium, Bacillus sp.[J]. Biotechnology Letters, 2014, 36(8):1669-1674. [22] Ma S, Tan YL, Yu WG, et al. Cloning, expression and characteriza-tion of a new ι-carrageenase from marine bacterium, Cellulophaga sp[J]. Biotechnology Letters, 2013, 35(10):1617-1622. [23] 许彩云, 朱艳冰, 倪辉, 等. 一株产卡拉胶酶细菌的分离鉴定及其酶学性质[J]. 微生物学报, 2015, 55(2):140-148. [24] Yao Z, Wang F, Gao Z, et al. Characterization of aκ-carrageenase from marine Cellulophaga lytica strain N5-2 and analysis of its degradation products[J]. International Journal of Molecular Sciences, 2013, 14(12):24592-24602. [25] 胡秋实, 苏忠亮, 李 江. 两种极端环境微生物产卡拉胶酶的研究[J], 化学与生物工程, 2014, 31(5):17-20. [26] 汤海青, 欧昌荣, 郑晓冬. 1 株产褐藻胶裂解酶海洋细菌的分离鉴定及其酶学性质[J]. 浙江大学学报, 2013, 39(4):387-395. [27] Badur AH, Jagtap SS, Yalamanchili G, et al. Characterization of the alginate lyases from Vibrio splendidus 12B01[J]. Applied and Environmental Microbiology, 2015, AEM. 03460-14. [28] Zhu Y, Wu L, Chen Y, et al. Characterization of an extracellular biofunctional alginate lyase from marine Microbulbifer sp. ALW1 and antioxidant activity of enzymatic hydrolysates[J]. Microbiological Research, 2016(182):49-58. [29] Sawant SS, Salunke BK, Kim BS. A rapid, sensitive, simple plate assay for detection of microbial alginate lyase activity[J]. Enzyme and Microbial Technology, 2015(77):8-13. [30] Afifi AF, Abo-Elmagd HI, Housseiny MM. Improvement of alkaline protease production by Penicillium chrysogenum NRRL 792 through physical and chemical mutation, optimization, characterization and genetic variation between mutant and wild-type strains[J]. Annals of Microbiology, 2014, 64(2):521-530. [31] 李鹏, 王健鑫, 罗红宇. 一株产淀粉酶海洋放线菌菌株的选育及发酵条件的研究[J]. 水产学报, 2014, 38(12):2059-2067. [32] Kim HJ, Lee YJ, Gao W, et al. Statistical optimization of fermentation conditions and comparison of their influences on production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using orthogonal array method[J]. Biotechnology and Bioprocess Engineering, 2011, 16(3):542-548. [33] El-Sersy NA, Abd-Elnaby H, Abou-Elela GM, et al. Optimization, economization and characterization of cellulase produced by marine Streptomyces ruber[J]. African Journal of Biotechnology, 2013, 9(38):6355-6364. [34] Swift SM, Hudgens JW, Heselpoth RD, et al. Characterization of AlgMsp, an Alginate Lyase from Microbulbifer sp. 6532A[J]. PLoS One, 2014, 9(11):e112939. [35] Ma S, Tan YL, Yu WG, et al. Cloning, expression and characteriza-tion of a newι-carrageenase from marine bacterium, Cellulophaga sp.[J]. Biotechnology Letters, 2013, 35(10):1617-1622. [36] Wang F, Hao J, Yang C, et al. Cloning, expression, and identification of a novel extracellular coldadapted alkaline protease gene of the marine bacterium strain YS- 80- 122[J]. Applied Biochemistry and Biotechnology, 2010, 162(5):1497-1505. [37] 王振东, 罗春艳, 杨晨, 等. 海洋细菌QDC01的鉴定及其几丁质酶基因的克隆与分析[J]. 农业生物技术学报, 2013, 21(6):734-744. [38] Aghajari N, Feller G, Gerday C, et al. Structural basis ofα-amylase activation by chloride[J]. Protein Science, 2002, 11(6):1435-1441. [39] Zhang X, Li D, Wang L, et al. Molecular engineering of cellulase catalytic domain based on glycoside hydrolase family[J]. Chinese Journal of Biotechnology, 2013, 29(4):422-433. [40] 吴丽云, 刘韩, 倪辉, 等. Pseudomonas syringae 褐藻胶裂解酶基因的克隆及信息学分析[J]. 集美大学学报:自然科学版, 2015, 20(3):179-185. [41] Kogure K, Simidu U, Taga N. A tentative direct microscopic method for counting living marine bacteria[J]. Canadian Journal of Microbiology, 1979, 25(3):415-420. [42] Keller M, Zengler K. Tapping into microbial diversity[J]. Nature Reviews Microbiology, 2004, 2(2):141-150. [43] Oberhardt MA, Zarecki R, Gronow S, et al. Harnessing the landscape of microbial culture media to predict new organism-media pairings[J]. Nature Communications, 2015(6):1-14. [44] Wang YB, Gao C, Zheng Z, et al. Immobilization of cold-active cellulase from antarctic bacterium and its use for kelp cellulose ethanol fermentation[J]. BioResources, 2015, 10(1):1757-1772. [45] Wargacki AJ, Leonard E, Win MN, et al. An engineered microbial platform for direct biofuel production from brown macroalgae[J]. Science, 2012, 335(6066):308-313. [46] Amin NS, Estabrook M, Jones BE, et al. Detergent compositions and methods of use for an alpha-amylase polypeptide of Bacillus species 195:US, 8, 470, 758[P]. 2013-6-25. [47] Souter PF, Jackson M, Clare JR, et al. Cleaning composition:US, 14/277, 179[P]. 2014-5-14. [48] Kobayashi R, Takisada M, Suzuki T, et al. Neoagarobiose as a novel moisturizer with whitening effect[J]. Bioscience, Biotechnology, and Biochemistry, 1997, 61(1):162-163. [49] 陈海敏, 严小军, 骆其君, 等. 一种琼胶低聚糖在化妆品中的应用:中国, 200910099054. 7[P]. 2010-12-01. [50] Wierzbicka-Wos A, Bartasun B, Cieslinski H, et al. Cloning and characterization of a novel cold-active glycoside hydrolase family 1 enzyme withβ-glucosidase, β-fucosidase andβ-galactosidase activities[J]. BMC Biotechnology, 2013, 13(1):22-34. [51] Joo WA, Kim CW. Proteomics of halophilic archaea[J]. Journal of Chromatography B, 2005, 815(1):237-250. [52] Voutilainen SP, Boer H, Alapuranen M, et al. Improving the thermostability and activity of Melanocarpus albomyces cellobiohydrolase Cel7B[J]. Applied Microbiology and Biotechnology, 2009, 83(2):261-272. [53] Dellomonaco C, Fava F, Gonzalez R. The path to next generation biofuels:successes and challenges in the era of synthetic biology[J]. Microb Cell Fact, 2010, 9(3):1-15. [54] Clomburg JM, Gonzalez R. Biofuel production in Escherichia coli:the role of metabolic engineering and synthetic biology[J]. Applied Microbiology and Biotechnology, 2010, 86(2):419-434. [55] Collins T, Hoyoux A, Dutron A, et al. Use of glycoside hydrolase family 8 xylanases in baking[J]. Journal of Cereal Science, 2006, 43(1):79-84. [56] Dutron A, Georis J, Genot B, et al. Use of family 8 enzymes with xylanolytic activity in baking:US, 8, 192, 772[P]. 2012-6-5. [57] Georis J, Dauvrin T, Hoyoux A, et al. Novel xylanases and their use:US, 10/592, 281[P]. 2005-3-11. |
[1] | ZHANG Kun, YAN Chang, TIAN Xin-peng. Research Progress in Microbial Single Cell Separation Methods [J]. Biotechnology Bulletin, 2023, 39(9): 1-11. |
[2] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[3] | LI Huan-min, GAO Feng-tao, LI Wei-zhong, WANG Jin-qing, FENG Jia-li. Progress in Research and Application of Natural Bio-materials as Immobilized Carriers [J]. Biotechnology Bulletin, 2023, 39(7): 105-112. |
[4] | ZHAO Lin-yan, XU Wu-mei, WANG Hao-ji, WANG Kun-yan, WEI Fu-gang, YANG Shao-zhou, GUAN Hui-lin. Effects of Applying Biochar on the Rhizosphere Fungal Community and Survival Rate of Panax notoginseng Under Continuous Cropping [J]. Biotechnology Bulletin, 2023, 39(7): 219-227. |
[5] | LI Yu-zhen, MEI Tian-xiu, LI Zhi-wen, WANG Qi, LI Jun, ZOU Yue, ZHAO Xin-qing. Advances in Genomic Studies and Metabolic Engineering of Red Yeasts [J]. Biotechnology Bulletin, 2023, 39(7): 67-79. |
[6] | ZHANG Jing, ZHANG Hao-rui, CAO Yun, HUANG Hong-ying, QU Ping, ZHANG Zhi-ping. Research Progress in Thermophilic Microorganisms for Cellulose Degradation [J]. Biotechnology Bulletin, 2023, 39(6): 73-87. |
[7] | YU Yang, LIU Tian-hai, LIU Li-xu, TANG Jie, PENG Wei-hong, CHEN Yang, TAN Hao. Study on Aerosol Microbial Community in the Production Workshop of Morel Spawn [J]. Biotechnology Bulletin, 2023, 39(5): 267-275. |
[8] | ZHANG Hua-xiang, XU Xiao-ting, ZHENG Yun-ting, XIAO Chun-qiao. Roles of Phosphate-solubilizing Microorganisms in the Passivation and Phytoremediation of Heavy Metal Contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(3): 52-58. |
[9] | WANG Xiao-mei, YANG Xiao-wei, LI Hui-shang, HE Wei, XIN Zhu-lin. Development Status of Synthetic Biology in Globe and Its Enlightenment [J]. Biotechnology Bulletin, 2023, 39(2): 292-302. |
[10] | LI Xin-yue, ZHOU Ming-hai, FAN Ya-chao, LIAO Sha, ZHANG Feng-li, LIU Chen-guang, SUN Yue, ZHANG Lin, ZHAO Xin-qing. Research Progress in the Improvement of Microbial Strain Tolerance and Efficiency of Biological Manufacturing Based on Transporter Engineering [J]. Biotechnology Bulletin, 2023, 39(11): 123-136. |
[11] | HU Jin-chao, SHEN Wen-qi, XU Chao-ye, FAN Ya-qi, LU Hao-yu, JIANG Wen-jie, LI Shi-long, JIN Hong-chen, LUO Jian-mei, WANG Min. Research Advances in the Enhancement of Microbial Tolerance to Acid Stress [J]. Biotechnology Bulletin, 2023, 39(11): 137-149. |
[12] | WANG Chen-yu, ZHOU Chu-yuan, HE Di, FAN Zi-hao, WANG Meng-meng, YANG Liu-yan. Role and Mechanism of Polyphosphate in the Microbial Response to Environmental Stresses [J]. Biotechnology Bulletin, 2023, 39(11): 168-181. |
[13] | WAN Qi-wu, BAO Xu-dong, DING Ke, MOU Hua-ming, LUO Yang. Research Progress in Microfluidic Technology in the Detection of Pathogenic Microorganisms [J]. Biotechnology Bulletin, 2023, 39(10): 107-114. |
[14] | SUN Zhuo, WANG Yan, HAN Zhong-ming, WANG Yun-he, ZHAO Shu-jie, YANG Li-min. Isolation, Identification and Biocontrol Potential of Rhizospheric Fungus of Saposhnikovia divaricata [J]. Biotechnology Bulletin, 2023, 39(1): 264-273. |
[15] | ZHANG Hao, LIU Miao-miao, LIU Xiao-na, LI Zong-yu, ZHAO Li-li, YANG Qing-xiang. Impact of Endophytic Microorganisms on the Pharmaco-active Compounds Production in Medicinal Plants:A Review [J]. Biotechnology Bulletin, 2022, 38(8): 41-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||