[1] Morales M, Quintero J, Conejeros R, et al. Life cycle assessment of lignocellulosic bioethanol:Environmental impacts and energy balance[J]. Renewable and Sustainable Energy Reviews, 2015, 42:1349-1361. [2] Madhavan A, Srivastava A, Kondo A, et al. Bioconversion of lignoc-ellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae[J]. Critical Reviews in Biotechnology, 2012, 32(1):22-48. [3] Carrere H, Antonopoulou G, Affes R, et al. Review of feedstock pretreatment strategies for improved anaerobic digestion:From lab-scale research to full-scale application[J]. Bioresource Technology, 2016, 199:386-397. [4] Cotter PD, Hill C. Surviving the acid test:Responses of gram-positive bacteria to low pH[J]. Microbiology and Molecular Biology Revi-ews, 2003, 67(3):429-453. [5] Choi GW, Um HJ, Kang HW, et al. Bioethanol production by a flocculent hybrid, CHFY0321 obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus[J]. Biomass and Bioenergy, 2010, 34(8):1232-1242. [6] Zhao XQ, Bai FW. Yeast flocculation:New story in fuel ethanol production[J]. Biotechnology Advances, 2009, 27(6):849-856. [7] 胡纯铿, 白凤武, 安利佳. 絮凝特性对自絮凝颗粒酵母耐酒精能力的影响及作用机制[J]. 生物工程学报, 2005, 21(1):123-128. [8] 巩继贤, 郑辉杰, 郑宗宝, 等. 微生物进化工程育种技术进展与展望[J]. 生物加工过程, 2010, 8(2):69-76. [9] 赵春苗, 徐春厚. 原生质体融合技术及在微生物育种中的应用[J]. 中国微生态学杂志, 2012, 24(4):379-382. [10] 叶世超, 薛婷, 王晓斐, 等. 酿酒酵母耐高温提高技术的研究进展[J]. 中国农学通报, 2013, 29(21):126-130. [11] Bassi AP, da Silva JC, Reis VR, et al. Effects of single and combined cell treatments based on low pH and high concentrations of ethanol on the growth and fermentation of Dekkera bruxellensis and Saccharomyces cerevisiae[J]. World Journal of Microbiology & Biotechnology, 2013, 29(9):1661-1676. [12] de Melo HF, Bonini BM, Thevelein J, et al. Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations[J]. Journal of Applied Microbiology, 2010, 109(1):116-127. [13] Causton HC, Ren B, Koh SS, et al. Remodeling of yeast genome expression in response to environmental changes[J]. Molecular Biology of the Cell, 2001, 12(2):323-337. [14] Garay-Arroyo A, Covarrubias AA, Clark I, et al. Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains[J]. Applied Microbiology and Biotechnology, 2003, 63(6):734-741. [15] 潘静, 王昌禄, 李风娟, 等. 多耐性酒精酵母菌的选育及特性研究[J]. 中国酿造, 2011, 30(5):113-116. [16] Mitsumasu K, Liu ZS, Tang YQ, et al. Development of industrial yeast strain with improved acid- and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating[J]. Journal of Bioscience and Bioengineering, 2014, 118(6):689-695. [17] Benjaphokee S, Hasegawa D, Yokota D, et al. Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol[J]. New Biotechnology, 2012, 29(3):379-386. [18] 关妮, 杨登峰, 米慧芝, 等. 多优良性状工业化酿酒酵母的选育及其特性研究[J]. 中国酿造, 2010, 29(9):45-48. [19] Sanda T, Hasunuma T. Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids[J]. Bioresource Technology, 2011, 102(17):7917-7924. [20] Ortiz-Muñiz B, Carvajal-Zarrabal O, Torrestiana-Sanchez B, et al. Kinetic study on ethanol production using Saccharomyces cerevisiae ITV-01 yeast isolated from sugar cane molasses[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(10):1361-1367. [21] 罗珠, 汤岳琴, 孙照勇, 等. 基于连续发酵驯化的耐酸性酿酒酵母的育种[J]. 四川大学学报:自然科学版, 2014, 51(4):821-828. [22] 杜昭励, 程艳飞, 朱卉, 等. 絮凝基因FLO1及FLO1c高表达提高工业酿酒酵母乙酸耐受性及发酵性能[J]. 生物工程学报, 2015, 31(2):231-241. |