Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (3): 22-28.doi: 10.13560/j.cnki.biotech.bull.1985.2017.03.004
Previous Articles Next Articles
YAN Yu-ping, ZHONG Xi, WANG Xue-feng
Received:
2016-06-13
Online:
2017-03-26
Published:
2017-03-07
YAN Yu-ping, ZHONG Xi, WANG Xue-feng. Research Progress on Small Non-coding RNA of the Xanthomonas spp.[J]. Biotechnology Bulletin, 2017, 33(3): 22-28.
[1] Livny J, Waldor MK. Identification of small RNAs in diverse bacter-ial species[J]. Current Opinion in Microbiology, 2007, 10(2):96-101. [2] Chao Y, Kai P, Reinhardt R, et al. An atlas of Hfq-bound transcripts reveals 3'UTRs as a genomic reservoir of regulatory small RNAs[J]. EMBO Journal, 2012, 31:4005-4019. [3] Oliva G, Sahr T, Buchrieser C. Small RNAs, 5'UTR elements and RNA-binding proteins in intracellular bacteria:impact on metabolism and virulence[J]. FEMS Microbiology Reviews, 2015, 39(3):331-349. [4] Gottesman S, Storz G. Bacterial small RNA regulators:versatile roles and rapidly evolving variations[J]. Cold Spring Harbor Perspectives in Biology, 2011, 3(12):723-729. [5] Sievers S, Lillebæk EMS, Jacobsen K, et al. A multicopy sRNA of Listeria monocytogenes regulates expression of the virulence adhesin LapB[J]. Nucleic Acids Research, 2014, 42(14):9383-9398. [6] Da Silva AR, Ferro JA, Reinach F, et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities[J]. Nature, 2002, 417(6887):459-463. [7] Afolabi O, Milan B, Amoussa R, et al. First report of Xanthomonas oryzae pv. oryzicola causing bacterial leaf streak of rice in Burundi[J]. Applied and Environmental Microbiology, 2015, 81:688-698. [8] Leyns F, Cleene MD, Swings JG, et al. The host range of the genus Xanthomonas[J]. Botanical Review, 1984, 50(3):308-356. [9] 龙海, 李一农, 李芳荣, 等. 植物病原菌黄单胞菌的分类研究进展[J]. 植物保护, 2010, 36(5):11-16. [10] Mikulík K, Palečková P, Felsberg J, et al. SsrA genes of streptomycetes and association of proteins to the tmRNA during development and cellular differentiation[J]. Proteomics, 2008, 8(7):1429-1441. [11] Eddy SR. Non-coding RNA genes and the modern RNA world[J]. Nature Reviews Genetics, 2001, 2(12):919-929. [12] Romeo T. Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB[J]. Molecular Microbiology, 1998, 29(6):1321-1330. [13] Kazantsev AV, Pace NR. Bacterial RNase P:a new view of an ancient enzyme[J]. Nature Reviews Microbiology, 2006, 4(10):729-740. [14] Brantl S. Regulatory mechanisms employed by cis-encoded antisense RNAs[J]. Current Opinion in Microbiology, 2007, 10(2):102-109. [15] Aiba H. Mechanism of RNA silencing by Hfq-binding small RNAs[J]. Current Opinion in Microbiology, 2007, 10(2):134-139. [16] Georg J, Hess WR. cis-antisense RNA, another level of gene regulation in bacteria[J]. Microbiology and Molecular Biology Reviews, 2011, 75(2):286-300. [17] Chambers JR, Sauer K. Small RNAs and their role in biofilm formation[J]. Trends in Microbiology, 2013, 21(1):39-49. [18] Prévost K, Desnoyers G, Jacques JF, et al. Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage[J]. Genes & Development, 2011, 25(4):385-396. [19] Brennan RG, Link TM. Hfq structure, function and ligand binding[J]. Current Opinion in Microbiology, 2007, 10(2):125-133. [20] Warrier I, Hicks LD, Battisti JM, et al. Identification of novel small RNAs and characterization of the 6S RNA of Coxiella burnetii[J]. PLoS One, 2014, 9(6):e100147. [21] Kulkarni PR, Cui X, Williams JW, et al. Prediction of CsrA-regulating small RNAs in bacteria and their experimental verification in Vibrio fischeri[J]. Nucleic Acids Research, 2006, 34(11):3361-3369. [22] Wadler CS, Vanderpool CK. A dual function for a bacterial small RNA:SgrS performs base pairing-dependent regulation and encodes a functional polypeptide[J]. Proceedings of the National Academy of Sciences, 2007, 104(51):20454-20459. [23] Vanderpool CK, Balasubramanian D, Lloyd CR. Dual-function RNA regulators in bacteria[J]. Biochimie, 2011, 93(11):1943-1949. [24] Grabowicz M, Koren D, Silhavy TJ. The CpxQ sRNA negatively regulates skp to prevent mistargeting of β-Barrel outer membrane proteins into the cytoplasmic membrane[J]. Microbiology, 2016, 7(2):312-328. [25] Song T, Mika F, Lindmark B, et al. A new Vibrio cholerae, sRNA modulates colonization and affects release of outer membrane vesicles[J]. Molecular Microbiology, 2008, 70(1):100-111. [26] Hoe CH, Raabe CA, Rozhdestvensky TS, et al. Bacterial sRNAs:regulation in stress[J]. International Journal of Medical Microbiology, 2013, 303(5):217-229. [27] Pfeiffer V, Papenfort K, Lucchini S, et al. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation[J]. Nature Structural & Molecular Biology, 2009, 16(8):840-846. [28] Pfeiffer V, Sittka A, Tomer R, et al. A small non-coding RNA of the invasion gene island(SPI-1)represses outer membrane protein synthesis from the Salmonella core genome[J]. Molecular Microbiology, 2007, 66(5):1174-1191. [29] Wassarman KM, Storz G. 6S RNA regulates E. coli RNA polymerase activity[J]. Cell, 2000, 101(6):613-623. [30] Leng Y, Vakulskas CA, Zere TR, et al. Regulation of CsrB/C sRNA decay by EIIA Glc of the phosphoenolpyruvate:carbohydrate phosphotransferase system[J]. Molecular Microbiology, 2015, 99(4):627-639. [31] Holmqvist E, Vogel J. A small RNA serving both the Hfq and CsrA regulons[J]. Genes & Development, 2013, 27(10):1073-1081. [32] Kimata K, Tanaka Y, Inada T, et al. Expression of the glucose transporter gene, ptsG, is regulated at the mRNA degradation step in response to glycolytic flux in Escherichia coli[J]. The EMBO Journal, 2001, 20(13):3587-3595. [33] Maki K, Otaka MH, Aiba H. A minimal base-pairing region of a bacterial small RNA SgrS required for translational repression of ptsG mRNA[J]. Molecular Microbiology, 2010, 76(3):782-792. [34] Semsey S, Andersson AM, Krishna S, et al. Genetic regulation of fluxes:iron homeostasis of Escherichia coli[J]. Nucleic Acids Research, 2006, 34(17):4960-4967. [35] Jacques JF, Jang S, Prévost K, et al. RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli[J]. Molecular Microbiology, 2006, 62(4):1181-1190. [36] Schellhorn HE. Elucidating the function of the RpoS regulon[J]. Future Microbiology, 2014, 9(4):497-507. [37] Dalia AB. RpoS is required for natural transformation of Vibrio cholerae, through regulation of chitinases[J]. Environmental Microbiology, 2016, doi:10. 1111/1462-2920. 13302. [38] Mccullen CA, Benhammou JN, Majdalani N, et al. Mechanism of positive regulation by DsrA and RprA small noncoding RNAs:pairing increases translation and protects rpoS mRNA from degradation[J]. Journal of Bacteriology, 2010, 192(21):5559-5571. [39] Wilf NM, Salmond GP. The stationary phase sigma factor, RpoS, regulates the production of a carbapenem antibiotic, a bioactive prodigiosin and virulence in the enterobacterial pathogen Serratia sp. ATCC 39006[J]. Microbiology, 2012, 158(Pt 3):648-658. [40] Mandin P, Gottesman S. Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA[J]. The EMBO Journal, 2010, 29(18):3094-3107. [41] Chevalier C, Boisset S, Romilly C, et al. Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation[J]. PLoS Pathogens, 2010, 6(3):e1000809. [42] Huntzinger E, Boisset S, Saveanu C, et al. Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression[J]. The EMBO Journal, 2005, 24(4):824-835. [43] Jones JB, Lacy GH, Bouzar H, et al. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper[J]. Systematic & Applied Microbiology, 2004, 27(6):755-762. [44] Zimaro T, Thomas L, Marondedze C, et al. The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation[J]. BMC Microbiology, 2014, 14(1):50-57. [45] Ryan RP, Vorhölter FJ, Potnis N, et al. Pathogenomics of Xanthomonas:understanding bacterium-plant interactions[J]. Nature Reviews Microbiology, 2011, 9(5):344-355. [46] Abendroth U, Schmidtke C, Bonas U. Small non-coding RNAs in plant-pathogenic Xanthomonas spp.[J]. RNA Biology, 2014, 11(5):457-463. [47] Findeiss S, Schmidtke C, Stadler PF, et al. A novel family of plasmid-transferred anti-sense ncRNAs[J]. RNA Biology, 2010, 7(2):120-124. [48] Schmidtke C, Findeiss S, Sharma CM, et al. Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions[J]. Nucleic Acids Research, 2012, 40(5):2020-2031. [49] Schmidtke C, Abendroth U, Brock J, et al. Small RNA sX13:a multifaceted regulator of virulence in the plant pathogen Xanthomonas[J]. PLoS Pathogens, 2013, 9(9):e1003626. [50] Liang H, Zhao YT, Zhang JQ, et al. Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae[J]. BMC Genomics, 2011, 12(1):87-101. [51] Jiang RP, Tang DJ, Chen XL, et al. Identification of four novel small non-coding RNAs from Xanthomonas campestris pathovar campestris[J]. BMC Genomics, 2010, 11(1):316-325. [52] An SQ, Febrer M, Mccarthy Y, et al. High-resolution transcriptional analysis of the regulatory influence of cell-to-cell signalling reveals novel genes that contribute to Xanthomonas phytopathogenesis[J]. Molecular Microbiology, 2013, 88(6):1058-1069. [53] 周莲, 王杏雨, 何亚文. 植物病原黄单胞菌DSF信号依赖的群体感应机制及调控网络[J]. 中国农业科学, 2013, 46(14):2910-2922. [54] Chen XL, Tang DJ, Jiang RP, et al. sRNA-Xcc1, an integron-encoded transposon-and plasmid-transferred trans-acting sRNA, is under the positive control of the key virulence regulators HrpG and HrpX of Xanthomonas campestris pathovarcampestris[J]. RNA Biology, 2011, 8(6):947-953. [55] Shao W, Price MN, Deutschbauer AM, et al. Conservation of transcription start sites within genes across a bacterial genus[J]. Microbiology, 2014, 5(4):01398-01412. [56] Cohen O, Doron S, Wurtzel O, et al. Comparative transcriptomics across the prokaryotic tree of life[J]. Nucleic Acids Research, 2016, doi:10. 1093/nar/gkw394. |
[1] | REN Pei-dong, PENG Jian-ling, LIU Sheng-hang, YAO Zi-ting, ZHU Gui-ning, LU Guang-tao, LI Rui-fang. Isolation and Identification of a Bacillus safensis Strain GX-H6 and Its Biocontrol Effect on Bacterial Leaf Streak of Rice [J]. Biotechnology Bulletin, 2023, 39(5): 243-253. |
[2] | ZHENG Huan, LIN Dong-mei, LIU Jun-yuan, ZHANG Yin-lian, LIN Biao-sheng, LIN Zhan-xi, LI Jing. Analysis of Amino Acid Metabolism Difference Between Fruiting Body and Mycelium of Taiwanofungus camphoratus by LC-QTOF-MS Metabonomics [J]. Biotechnology Bulletin, 2023, 39(5): 254-266. |
[3] | YAO Jin-dong, TANG Hua-mei, YANG Wen-xiao, ZHANG Li-shan, LIN Xiang-min. Comparative Proteomics Analysis of Aeromonas hydrophila Under Enrofloxacin Stress [J]. Biotechnology Bulletin, 2023, 39(4): 288-296. |
[4] | CUI Ji-jie, CAI Wen-bo, ZHUANG Qing-hui, GAO Ai-ping, HUANG Jian-feng, CHEN Ya-hui, SONG Zhi-zhong. Biological Function of Gene MiISU1 for Fe-S Cluster Assembly in Mangifera indica [J]. Biotechnology Bulletin, 2023, 39(2): 139-146. |
[5] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
[6] | WEI Xin-xin, LAN Hai-yan. Advances in the Regulation of Plant MYB Transcription Factors in Secondary Metabolism and Stress Response [J]. Biotechnology Bulletin, 2022, 38(8): 12-23. |
[7] | ZHOU Xue-min, KANG Li-juan, GUO Yong-ni, YANG Xiao-han, JIANG Yi-long, WANG Ze-long, SUN Qian, KANG bo. Expressions of Genes Related to Polyamine Metabolism and Muscle Development in Muscle Tissues of Duck at Different Ages [J]. Biotechnology Bulletin, 2022, 38(8): 244-251. |
[8] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. pOsHAK1:OsFLN2 Expression Enhances the Drought Tolerance by Altering Sugar Metabolism in Rice [J]. Biotechnology Bulletin, 2022, 38(8): 92-100. |
[9] | WANG Zheng-yan, HU Hai-sheng, YONG Han-zi, LU Yu-jie. Nutritional Interactions Between Symbiotic Microbiota and Insect Hosts [J]. Biotechnology Bulletin, 2022, 38(7): 99-108. |
[10] | CHEN Hu, YANG Zhang-qi, SUN Shuang, LI Peng, XU Hui-lan. Expressions and of Genes Response to Signal Substances in MAPK Cascade Pathway Genes in Pinus massoniana [J]. Biotechnology Bulletin, 2022, 38(6): 187-197. |
[11] | GAO Xue-yan, CHEN Lin-xu, CHEN Xian-ke, PANG Xin, PAN Deng, LIN Jian-qun. Application of Acidithiobacillus spp. in Industry and Agriculture [J]. Biotechnology Bulletin, 2022, 38(5): 36-46. |
[12] | YAN Jiong, FENG Chen-yi, GAO Xue-kun, XU Xiang, YANG Jia-min, CHEN Zhao-yang. Construction of Homozygous Plin1-knockout Mouse Model and Phenotype Analysis Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2022, 38(3): 173-180. |
[13] | SUN Man-luan, GE Sai, BU Jia, ZHU Zhuang-yan. Regulation Mechanism of Ribonucleases in Escherichia coli [J]. Biotechnology Bulletin, 2022, 38(3): 234-245. |
[14] | LI Yi-dan, SHAN Xiao-hui. Gibberellin Metabolism Regulation and Green Revolution [J]. Biotechnology Bulletin, 2022, 38(2): 195-204. |
[15] | NIU Hong-yu, SHU Qian, YANG Hai-jun, YAN Zhi-yong, TAN Ju. Isolation, Identification, Degradation Characteristics and Metabolic Pathway of an Efficient Sodium Dodecyl Sulfate-degrading Bacterium [J]. Biotechnology Bulletin, 2022, 38(12): 287-299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||