[1] 张译之, 苟敏, 汤岳琴. 紫外诱变驯化提高酿酒酵母木糖发酵的抑制物耐受性[J]. 生物技术通报, 2017, 33(9):191-199. [2] Sardi M, Rovinskiy N, Zhang Y, et al.Leveraging genetic-background effects in Saccharomyces cerevisiae to improve lignocellulosic hydrol-ysate tolerance[J]. Applied & Environmental Microbiology, 2016, 82(19):01603-16. [3] Wang S, Cheng G, Joshua C, et al.Furfural tolerance and detoxification mechanism in Candida tropicalis[J]. Biotechnology for Biofuels, 2016, 9(1):250-261. [4] Hasunuma T, Ismail KS, et al.Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural[J]. J Biosci Bioeng, 2014, 117(2):165-169. [5] 赵鲜仙. 酿酒酵母糠醛耐受关键转录调控基因的筛选及其被调控基因的转录分析[D]. 雅安:四川农业大学, 2015. [6] Putman AI, Carbone I.Challenges in analysis and interpretation of microsatellite data for population genetic studies[J]. Ecology & Evolution, 2014, 4(22):4399-4429. [7] Tautz D.Hypervariability of simple sequences as a general source for polymorphic DNA markers[J]. Nucleic Acids Research, 1989, 17(16):6463-6471. [8] 黄龙花, 吴清平, 杨小兵, 等. 基于特定引物PCR的DNA分子标记技术研究进展[J]. 生物技术通报, 2011, 20(2):61-65. [9] Zhou JC, Yang XL, Cui SL, et al.Correlation between SSR markers and agronomic traits in peanut(Arachis hypogaea L.)[J]. Acta Agronomica Sinica, 2014, 40(7):1197-1205. [10] Hu XH, Wang MH, Tan T, et al.Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae[J]. Genetics, 2007, 175(3):1479-1487. [11] Pereira FB, Teixeira MC, Mira NP, et al.Genome-wide screening of Saccharomyces cerevisiae genes required to foster tolerance towards industrial wheat straw hydrolysates[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(12):1753-1761. [12] 李华, 刘丽丽, 李娟. 酿酒酵母产孢培养基的筛选及单倍体的分离[J]. 酿酒科技. 2008, 2(6):22-24. [13] Huxley C, Green ED, Dunham I.Rapid assessment of S. cerevisiae mating type by PCR[J]. Trends Genet, 1990, 6(8):236-236. [14] Guldener U, Heck S, Fielder T, et al.A new efficient gene disruption cassette for repeated use in budding yeast[J]. Nucleic Acids Research, 1996, 24(13):2519-2524. [15] Gietz RD, Schiestl RH, Willems AR, et al.Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure[J]. Yeast, 1995, 11(4):355-360. [16] Song HS, Jeon JM, Kim HJ, et al.Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli[J]. Bioresource Technology, 2017, 245:1430-1435. [17] Wu G, Xu Z, Jönsson LJ.Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion.[J]. Microbial Cell Factories, 2017, 16(1):199-214. [18] Steinmetz LM, Sinha H, Richards DR, et al.Dissecting the architecture of a quantitative trait locus in yeast[J]. Nature, 2002, 416(6878):326-330. [19] Geng P, et al.Genetic dissection of acetic acid tolerance in Saccha-romyces cerevisiae[J]. World J Microbiol Biotechnol, 2016, 32 (9):1-8. [20] Ben-Ari G, Zenvirth D, Sherman A, et al.Four linked genes participate in controlling sporulation efficiency in budding yeast[J]. PLoS Genetics, 2006, 2(11):195-205. [21] Perlstein EO, Ruderfer DM, Roberts DC, et al.Genetic basis of individual differences in the response to small-molecule drugs in yeast[J]. Nature Genetics, 2007, 39(4):496-502. [22] Swinnen S, Thevelein JM, Nevoigt E.Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae.[J]. Fems Yeast Research, 2012, 12(2):215-227. |