Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (10): 41-48.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0235
• Orginal Article • Previous Articles Next Articles
PENG Xiang1, ZHANG De-chun1, 2
Received:
2018-03-19
Online:
2018-10-26
Published:
2018-11-07
PENG Xiang, ZHANG De-chun. Research Advances on Tissue Culture Technology of Sorghum[J]. Biotechnology Bulletin, 2018, 34(10): 41-48.
[1] 张丽敏, 刘智全, 陈冰嬬, 等. 我国能源甜高粱育种现状及应用前景[J]. 中国农业大学学报, 2012, 17(6):76-82. [2] Dahlberg J, Berenji J, Sikora V, et al.Assessing sorghum[Sorghum bicolor(L)Moench]germplasm for new traits:food, fuels & unique uses[J]. Maydica, 2011, 56:85-92. [3] Vermerris W.Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane[J]. Journal of Integrative Plant Biology, 2011, 53(2):105-119. [4] 刘公社, 周庆源, 宋松泉, 等. 能源植物甜高粱种质资源和分子生物学研究进展[J]. 植物学报, 2009, 44(3):253-261. [5] Chandrashekar A, Satyanarayana KV.Disease and pest resistance in grains of sorghum and millets[J]. Journal of Cereal Science, 2006, 44(3):287-304. [6] Nwanze KF, Seetharama N, Sharma HC, et al.Biotechnology inpest management:Improving resistance in sorghum to insect pests[J]. African Crop Science, 1995, 3(2):209-215. [7] Chen M, Shelton A, Ye GY, et al.Insect-resistant genetically modified rice in China:From research to commercialization[J]. Annual Review of Entomology, 2011, 56:81-101. [8] Zhang BH.Transgenic cotton:From biotransformation methods to agricultural application[J]. Methods in Molecular Biology, 2013, 958:3-15. [9] Calla B, Blahut-Beatty L, Koziol L, et al.Genomic evaluation of oxalate-degrading transgenic soybean in response to sclerotinia sclerotiorum infection[J]. Molecular Plant Pathology, 2014, 15(6):563-575. [10] Polumahanthi S, Manin S, Pola S, et al.Tissue culture, molecular and genetic approaches to sorghum crop improvement[J]. Indian Journal of Plant Sciences, 2015, 4(2):97-113. [11] Liu GQ, Gilding EK, Godwin ID.A robust tissue culture system for sorghum[Sorghum bicolor(L.)Moench][J]. South African Journal of Botany, 2015, 98:157-160. [12] Liu GQ, Godwin ID.Highly efficient sorghum transformation[J]. Plant Cell Report, 2012, 31(6):999-1007. [13] Wu E, Lenderts B, Glassman K, et al.Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants[J]. In Vitro Cell Dev Biol Plant, 2014, 50(1):9-18. [14] Do PT, Lee H, Mookkan M, et al.Rapid and efficient Agrobacterium-mediated transformati on of sorghum(Sorghum bicolor)employing standard binary vectors and bar gene as a selectable marker[J]. Plant Cell Report, 2016, 35(10):2065-2076. [15] Hiei Y, Ishida Y, Komari. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens[J]. Frontiers in Plant Science, 2014, 5:1-11. [16] Li JQ, Wang LH, Zhan QW, et al.Development of a simple and efficient method for Agrobacterium-mediated transformation in sorghum[J]. International Journal of Agriculture & Biology, 2015, 18(1):134-138. [17] Lowe K, Wu E, Wang N, et al.Morphogenic regulators Baby boom and Wuschel improve monocot transformation[J]. Plant Cell, 2016, 28(9):1998-2015. [18] Cai T, Butler L.Plant regeneration from embryogenic callus initiated from immature inflorescences of several high-tannin sorghums[J]. Plant Cell, Tissue and Organ Culture, 1990, 20(2):101-110 . [19] Assem SK, Zamzam M, Hussein BA, et al.Evaluation of somatic embryogenesis and plant regeneration in tissue culture of ten sorghum(Sorghum bicolor L.)genotype[J]. African Journal of Biotechnology, 2014, 13(36):3672-3681. [20] Gamhorg OL, Shyluk JP, Brar DS, et al.Morphogenesis and plant regeneration from callus of immature embryos of sorghum[J]. Plant Science Letters, 1977, 10(1):67-74. [21] Dustan DI, Short KC, Dhaliwal H, et al.Further studies on plantlet production from cultured tissues of sorghum[J]. Protoplasma, 1979, 101(4):355-361. [22] Ma HT, Gu MH, Liang GH.Plant regeneration from cultured immature embryos of Sorghum bicolor(L.)Moench[J]. Theorl Appl Genet, 1987, 73(3):389-394. [23] 马鸿图, Liang GH.高粱幼胚培养及再生植株变异的研究[J]. 遗传学报, 1985, 12(5):350-357. [24] 韩福光, 张颍. 高粱不同外植体愈伤组织诱导的研究[J]. 辽宁农业科学, 1993, (1):45-48. [25] Brettell RIS, Wernicke W, Thomas E.Embryogenesis from cultured immature inflorescences of Sorghum bicolor[J]. Protoplasma, 1980, 104(1-2):141-148. [26] Jogeswar G, Ranadheer D, Anjaiah V, et al.High frequency somatic embryogenesis and regeneration in different genotypes of Sorghum bicolor(L.)Moench from immature inflorescence explants[J]. In Vitro Cell Dev Biol Plant, 2007, 43(2):159-166. [27] Murashige T, Skoog F.A revised medium for rapid growth and bioassays with tobacco tissue cultures[J]. Physiologia Plantarum, 1962, 15:473-497. [28] Gupta S, Khanna VK, Singh R, et al.Strategies for overcoming genotypic limitations of in vitro regeneration and determination of genetic components of variability of plant regeneration traits in sorghum[J]. Plant Cell Tiss Organ Cult, 2006, 86(3):379-388. [29] 徐丹, 陈立余, 徐子勤. 甜高粱离体再生体系的建立和组织结构变化的观察[J]. 植物生理学通讯, 2009, 45(8):771-774. [30] 赵利铭. 甜高粱遗传背景对其再生能力的影响及再生体系的建立[D]. 合肥:中国科学技术大学, 2010. [31] Pola S, Saradamani N, Ramana T.Mature embryos as a source material for efficient regeneration response in sorghum(Sorghum bicolor L. Moench)[J]. Sjemenarstvo, 2009, 26:3-4. [32] Wernicke W, Potrykus I, Thomas E.Morphogenesis from cultured leaf tissue of Sorghum bicolor — The morphogenetic pathway[J]. ProtopIasma, 1982, 111(1):53-62. [33] Pola S.Leaf discs as a source material for plant tissue culture studies of Sorghum bicolor(L.)Moench[J]. Not Sci Biol, 2011, 3(1):70-78. [34] Pola SR, Mani NS.Somatic embryogenesis and plantlet regeneration in Sorghum bicolor(L.)Moench from leaf segments[J]. Journal of Cell and Molecular Biology, 2006, 5:99-107. [35] Wen FS, Sorensen EL, Barnett F L, et al.Callus induction and plant regeneration from anther and inflorescence culture of Sorghum[J]. Euphytica, 1991, 52(3):177-181. [36] Nirwan RS, Kothari SL.High frequency shoot organogenesis in Sorghum bicolor(L)Moench[J]. J. Plant Biochemistry & Biotechnology, 2004, 13(2):149-152. [37] Kishore NS, Visarada K, Lakshmi YA, et al.In vitro culture methods in sorghum with shoot tip as the explant material[J]. Plant Cell Rep, 2006, 25(3):174-182. [38] 刘宣雨, 刘树君, 宋松泉. 建立甜高粱高频、高效再生体系的研究[J]. 中国农业科学, 2010, 43(23):4963-4969. [39] Baskaran P, Rajeswari BR, Jayabalan N.Development of an in vitro regeneration system in Sorghum[Sorghum bicolor(L.)Moench]using root transverse thin cell layers(tTCLs)[J]. Turk J Bot, 2006, 30:1-9. [40] Sticklen MB, Oraby H.Shoot apical meristem:a sustainable explant for genetic transformation of cereal crops[J]. In Vitro Cell Dev Bio Plant, 2005, 41(3):187-200. [41] Maekinnon C, Gunderson G, Nabors MW.Plant regeneration by somatic embryogenesis from callus cultures of sweet sorghum[J]. Plant Cell Reports, 1986, 5(5):349-351. [42] Linsmaier EM, Skoog F.Organic growth factor requirements of tobacco tissue cultures[J]. Physiologia Plantarum, 1965, 18:100-127. [43] Goh E J, Seong E S, Yoo J H, et al.Effect of plant growth regulators and media on regeneration of Sorghum bicolor(L.)Moench[J]. Korean J. Plant Res. , 2011, 24(2):168-173. [44] Chu CC, Wang CC, Sun CS, et al.Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources[J]. Scientia Sinica, 1975, 18(5):659-668. [45] Gamborg OL, Miller RA, Ojima K.Nutrient requments of suspension cultures of soybean root cells[J]. Expremental Cell Research, 1968, 50:151-158. [46] Elkonin LA, Pakhomova NV.Influence of nitrogen and phosphorus on induction embryogenic callus of sorghum[J]. Plant Cell, Tissue and Organ Culture, 2000, 61(2):115-123. [47] Kumar V, Campbell LM, Rathore KS.Rapid recovery and characterization of transformants following Agrobacterium-mediated T-DNA transfer to sorghum[J]. Plant Cell Tiss Organ Cult, 2011, 104(2):137-146. [48] Purnhauser L.Stimulation of shoot and root regeneration in wheat(Triticum aestivum)callus cultures by copper[J]. Cereal Research Communication, 1991, 19(4):419-423. [49] Purnhauser L, Gyulai G.Effect of copper on shoot and root regeneration in wheat, triticale, rape and tobacco tissue cultures[J]. Plant Cell Tissue and Organ Culture, 1993, 35(2):131-139. [50] Dahleen L.Improved plant regeneration from barley callus cultures by increased copper levels[J]. Plant Cell Tissue Organ Culture, 1995, 43(3):267-269. [51] Nirwan RS, Kothar SL.High copper levels improve callus induction and plant regeneration in Sorghum bicolor(L.)Moench In Vitro Cell Dev Biol Plant, 2003, 39(2):161-164. [52] Liu GQ, Gilding EK, Godwin ID.Additive effects of three auxins and copper on sorghum in vitro root induction[J]. In Vitro Cell Dev Biol Plant, 2013, 49(2):19-197. [53] Lidon FC, Barreiro MG, Henriquest F.Interactions between biomass production and ethylene biosynthesis in copper treated rice[J]. Journal of Plant Nutrition, 1995, 18(6):1301-1314. [54] Rao AM, Sree KP, Kishor PBK.Enhanced plant regeneration in grain and sweet sorghum by asparagine, proline and cefotaxime[J]. Plant Cell Reports, 1995, 15(1-2):72-75. [55] Elkonin LA, Lopushanskaya RF, Pakhomova NV.Initiation and maintenance of friable, embryogenetic callus of sorghum(Sorghum bicolor(L.)Moench)by amino acids[J]. Maydica, 1995, 40(2):153-157. [56] Hagio T.Adventitious shoot regeneration from immature embryos of sorghum[J]. Plant Cell, Tissue and Organ Culture, 2002, 68(1):65-72. [57] Nguyen TV, Thu TT, Claeys M, et al.Agrobacterium mediated transformation of sorghum(Sorghum bicolor(L.)Moench)using an improved in vitro regeneration system[J]. Plant Cell Tiss and Organ Cult, 2007, 91(2):155-164. [58] Lu L, Wu XG, Yin XY, et al.Development of marker-free transgenic sorghum[Sorghum bicolor(L.)Moench]using standard binary vectors with bar as a selectable marker[J]. Plant cell Tiss Organ Cult, 2009, 99(1):97-108. [59] Che P, Anand A, Wu E, et al.Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application[J]. Plant Biotechnology Journal, 2018:1-8. [60] Kumar V, Staden JV.New insights into plant somatic embryogenesis:an epigenetic view[J]. Acta Physiol Plant, 2017, 39:1-17. |
[1] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
[2] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[3] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[4] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[5] | LI Wen-chen, LIU Xin, KANG Yue, LI Wei, QI Ze-zheng, YU Lu, WANG Fang. Optimization and Application of Tobacco Rattle Virus-induced Gene Silencing System in Soybean [J]. Biotechnology Bulletin, 2023, 39(7): 143-150. |
[6] | XV Ru-yue, WANG Zi-xiao, SHEN Lu, WU Rong-rong, YAO Fang-ting, TAN Zhong-yuan, LIU Heng-wei, ZHANG Wen-chao. Research Progress in Bioremediation of Cr(VI) [J]. Biotechnology Bulletin, 2023, 39(6): 49-60. |
[7] | PAN Guo-qiang, WU Si-yuan, LIU Lu, GUO Hui-ming, CHENG Hong-mei, SU Xiao-feng. Construction and Preliminary Analysis of Verticillim dahliae Mutant Library [J]. Biotechnology Bulletin, 2023, 39(5): 112-119. |
[8] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[9] | ZHANG Hua-xiang, XU Xiao-ting, ZHENG Yun-ting, XIAO Chun-qiao. Roles of Phosphate-solubilizing Microorganisms in the Passivation and Phytoremediation of Heavy Metal Contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(3): 52-58. |
[10] | YU Shi-xia, JIANG Yu-tong, LIN Wen-hui. Research Progress in Signals and Molecular Mechanisms of Ovule Primordia Initiation [J]. Biotechnology Bulletin, 2023, 39(2): 1-9. |
[11] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[12] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[13] | GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress [J]. Biotechnology Bulletin, 2022, 38(9): 226-236. |
[14] | WEI Xin-xin, LAN Hai-yan. Advances in the Regulation of Plant MYB Transcription Factors in Secondary Metabolism and Stress Response [J]. Biotechnology Bulletin, 2022, 38(8): 12-23. |
[15] | LI Jia-le, LIN Sheng-hao, XU Wen-tao. Construction of an Ultra-sensitive Colorimetric Biosensor for Insect Resistance Genes Based on Loop-mediated Isothermal Amplification [J]. Biotechnology Bulletin, 2022, 38(8): 69-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||