Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (12): 152-158.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0561
• Orginal Article • Previous Articles Next Articles
WANG Li-guang, CHEN Jun, YE Chun-lei, LUO Jun-jie
Received:
2018-06-20
Online:
2018-12-26
Published:
2018-12-24
WANG Li-guang, CHEN Jun, YE Chun-lei, LUO Jun-jie. Mutant Construction and Functional Validation of NHX1 in Saccharomyces cerevisiae BJ3505[J]. Biotechnology Bulletin, 2018, 34(12): 152-158.
[1] Wood V, Gwilliam R, et al.The genome sequence of Schizosaccharo-myces pombe[J]. Nature, 2002, 415(21):871-880. [2] 崔东, 郑文岭, 马文丽, 等. 一种快速简便初步筛选酵母基因组文库的方法[J]. 广东医学, 2003(1):19-20. [3] 周佳, 康亚妮. 单细胞衰老研究的模式生物——酿酒酵母[J]. 生命科学, 2013(5):504-510. [4] 唐香山, 张学文. 酿酒酵母表达系统[J]. 生命科学研究, 2004(S1):106-109. [5] 周璐, 李越中, 李健. 酿酒酵母基因组学研究进展[J]. 生命科学, 1999(2):87-91. [6] Brett CL, Donowitz M, Rao R.Evolutionary origins of eukaryotic sodium/proton exchangers[J]. Am J Physiol Cell Physiol, 2005, 288(2):C223-C239. [7] Chang AB, Lin R, Keith SW, et al.Phylogeny as a guide to structure and function of membrane transport proteins[J]. Mol Membr Biol, 2004, 21(3):171-181. [8] Maser P, Thomine S, Schroeder JI, et al.Phylogenetic relationships within cation transporter families of Arabidopsis[J]. Plant Physiol, 2001, 126(4):1646-1667. [9] Bassil E, Coku A, Blumwald E.Cellular ion homeostasis:emerging roles of intracellular NHXNa+/H+ antiporters in plant growth and development[J]. J Exp Bot, 2012, 63(16):5727-5740. [10] Chanroj S, Wang G, Venema K, et al.Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants[J]. Front Plant Sci, 2012, 3:25. [11] Pardo JM, Cubero B, Leidi EO, et al.Alkali cation exchangers:roles in cellular homeostasis and stress tolerance[J]. J Exp Bot, 2006, 57(5):1181-1199. [12] Brett CL, Tukaye DN, Mukherjee S, et al.The yeast endosomal Na+(K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking[J]. Mol Biol Cell, 2005, 16(3):1396-1405. [13] Blumwald E.Sodium transport and salt tolerance in plants[J]. Curr Opin Cell Biol, 2000, 12(4):431-434. [14] Dragwidge JM, Ford BA, Ashnest JR, et al.Two endosomal NHX-type Na+/ H+ antiporters are involved in auxin mediated development in Arabidopsis thaliana[J]. Plant Cell Physiol, 2018, 59(8):1660-1669. [15] Fan L, Zhao L, Hu W, et al.Na(+), K(+)/H(+)antiporters regulate the pH of endoplasmic reticulum and auxin-mediated development[J]. Plant Cell Environ, 2018, 41(4):850-864. [16] Zeng Y, Li Q, et al.Two NHX-type transporters from Helianthus tu- berosus improve the tolerance of rice to salinity and nutrient defici-ency stress[J]. Plant Biotechnol J, 2018, 16(1):310-321. [17] Wu X, Ebine K, Ueda T, et al.AtNHX5 and AtNHX6 are required for the subcellular localization of the SNARE complex that mediates the trafficking of seed storage proteins in Arabidopsis[J]. 2016, 11(3):e151658. [18] Qiu QS.AtNHX5 and AtNHX6:Roles in protein transport[J]. Plant Signal Behav, 2016, 11(6):e1184810. [19] Wang L, Wu X, Liu Y, et al.AtNHX5 and AtNHX6 control cellular K+ and pH homeostasis in Arabidopsis:three conserved acidic residues are essential for K+ transport[J]. PLoS One, 2015, 10(12):e144716. [20] Reguera M, Bassil E, et al.pH Regulation by NHX-Type antiporters is required for receptor-mediated protein trafficking to the vacuole in Arabidopsis[J]. Plant Cell, 2015, 27(4):1200-1217. [21] Venema K, Quintero FJ, Pardo JM, et al.The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in Reconstituted Liposomes[J]. J Biol Chem, 2002, 277(4):2413-2418. [22] Shi H, Ishitani M, Kim C, et al.The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter[J]. Proc Natl Acad Sci USA, 2000, 97(12):6896-6901. [23] Wu SJ, Ding L, Zhu JK.SOS1, a genetic locus essential for salt tolerance and potassium acquisition[J]. Plant Cell, 1996, 8(4):617-627. [24] An R, Chen QJ, Chai MF, et al.AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter[J]. Plant J, 2007, 49(4):718-728. [25] Liu H, Tang R, Zhang Y, et al.AtNHX3 is a vacuolar K+/H+ antiporter required for low-potassium tolerance in Arabidopsis thaliana[J]. Plant Cell Environ, 2010, 33(11):1989-1999. [26] Li HT, Liu H, Gao XS, et al.Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress[J]. Biochem Biophys Res Commun, 2009, 382(3):637-641. [27] Hu DG, Ma QJ, Sun CH, et al.Overexpression of MdSOS2L1, a CIPK protein kinase, increases the antioxidant metabolites to enhance salt tolerance in apple and tomato[J]. 2016, 156(2):201-214. [28] Yang Y, Tang R, Jiang C, et al. Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants[J]. Plant Biotechnology Journal, 2015:n/a-n/a. [29] Hassan MA, Daniso E, Boscaiu M, et al.Expression of the vacuolar Na+/H+ antiporter gene(NHX1)in three plantago species differing in salt tolerance[J]. Bulletion UASVM Horticulture, 2015, 72(2):441-442. [30] Lu W, Guo C, Li X, et al.Overexpression of TaNHX3, a vacuolar Na+ /H+ antiporter gene inwheat, enhances salt stress tolerance in tobacco by improving related physiological processes[J]. Plant Physiol Biochem, 2014, 76(5):17-28. [31] Yarra R, He SJ, Abbagani S, et al.Overex-pression of a wheat Na+/H+ antiporter gene(TaNHX2)enhances tolerance to salt stress in transgenic tomato plants(Solanum lycopersicum L.)[J]. Plant Cell Tissue and Organ Culture, 2012, 111(1):49-57. [32] NT, JW, Q. XZ. Overexpression of Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwifruit(Actinidia deliciosa)[J]. South African Journal of Botany, 2011, 77(1):160-169. [33] Li M, Lin X, Li H, et al.Overexpression of AtNHX5 improves tolerance to both salt and water stress in rice(Oryza sativa L.)[J]. Plant Cell, Tissue and Organ Culture, 2011, 107(2):283-293. [34] Li M, Li Y, Li H, et al.Overexpression of AtNHX5 improves tolerance to both salt and drought stress in Broussonetia papyrifera(L.)Vent[J]. Tree Physiol, 2011, 31(3):349-357. [35] Shi. L, Li. H, Pan. X, et al.Improvement of Torenia fournieri salinity tolerance by expression of Arabidopsis AtNHX5[J]. Functional Plant Biology, 2008, 35(3):185-192. [36] Quintero FJ, Blatt MR, Pardo JM.Functional conservation between yeast and plant endosomal Na+/H+ antiporters[J]. FEBS Lett, 2000, 471(2-3):224-228. [37] Qiu QS.V-ATPase, ScNhx1p and yeast vacuole fusion[J]. J Genet Genomics, 2012, 39(4):167-171. [38] Bahler J, Wu JQ, et al.Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe[J]. Yeast, 1998, 14(10):943-951. [39] Longtine MS, Mckenzie AR, et al.Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae[J]. Yeast, 1998, 14(10):953-961. [40] 虞兰兰, 李育阳. 利用一步基因中断法构建克鲁氏乳酸酵母leu2突变体[J]. 遗传, 1994(3):33-37. [41] Rothstein RJ.One-step gene disruption in yeast[J]. Methods Enzymol, 1983, 101:202-211. [42] Gaxiola RA, Rao R, Sherman A, et al.The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast[J]. Proc Natl Acad Sci USA, 1999, 96(4):1480-1485. [43] Qiu QS, Fratti RA.The Na+/H+ exchanger Nhx1p regulates the initiation of Saccharomyces cerevisiae vacuole fusion[J]. J Cell Sci, 2010, 123(Pt 19):3266-3275. [44] Qiu QS.Plant and yeast NHX antiporters:roles in membrane trafficking[J]. J Integr Plant Biol, 2012, 54(2):66-72. [45] Gierth M, Maser P.Potassium transporters in plants--involvement in K+ acquisition, redistribution and homeostasis[J]. FEBS Lett, 2007, 581(12):2348-2356. [46] Nass R, Rao R.The yeast endosomal Na+/H+ exchanger, Nhx1, confers osmotolerance following acute hypertonic shock[J]. Microbiology, 1999, 145(Pt 11):3221-3228. [47] Nass R, Cunningham KW, Rao R.Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase. Insights into mechanisms of sodium tolerance[J]. J Biol Chem, 1997, 272(42):26145-26152. [48] Prior C, Potier S, Souciet JL, et al.Characterization of the NHA1 gene encoding a Na+/H+-antiporter of the yeast Saccharomyces cerevisiae[J]. FEBS Lett, 1996, 387(1):89-93. |
[1] | XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.) [J]. Biotechnology Bulletin, 2023, 39(9): 27-39. |
[2] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[3] | ZHU Ying-xuan, LI Ke-jing, HE Min, ZHENG Dao-qiong. Research Progress in the Exploring Genomic Variations Driven by Stress Factors Using the Yeast Model [J]. Biotechnology Bulletin, 2023, 39(11): 191-204. |
[4] | SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(11): 226-237. |
[5] | WANG Wen-tao, FENG Qi, LIU Chen-guang, BAI Feng-wu, ZHAO Xin-qing. Redox-sensitive Genetic Parts Improve the Tolerance of Yeast to Lignocellulosic Hydrolysate Inhibitors [J]. Biotechnology Bulletin, 2023, 39(11): 360-372. |
[6] | LI Ping, GUO Fa-ping, TIAN Min, SHUI Yang, XU Na-na, BAI Da-song, YU De-jin, ZHANG Jie, HU Yun-gao, PENG You-lin. Research Progress of Sterol in Regulating Plant Growth and Development [J]. Biotechnology Bulletin, 2022, 38(7): 90-98. |
[7] | YUE Man-fang, ZHANG Chun, WU Zhong-yi. Research Progress in the Structural and Functional Analysis of Plant Transcription Factor AP2/ERF Protein Family [J]. Biotechnology Bulletin, 2022, 38(12): 11-26. |
[8] | CUI Xin-gang, SUN Ya-xin, CUI Xiao-jing, DENG Yan-wen, SUN En-hao, WANG Jun-fang, CUI Hong-jing. Roles of Gene TAP42 in the Cell Wall Stress Response of Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2021, 37(10): 57-62. |
[9] | GU Han-qi, SHAO Ling-zhi, LIU Ran, LIU Xiao-guang, LI Ling, LIU Qian, LI Jie, ZHANG Ya-li. Lipidomics Analysis of Saccharomyces cerevisiae with Tolerance to Phenolic Inhibitors [J]. Biotechnology Bulletin, 2021, 37(1): 15-23. |
[10] | WU Yu, WANG Jin-hua, ZHAO Xiao. Enhanced Furfural Tolerance in Saccharomyces cerevisiae by the Overexpression of GLN1 Gene [J]. Biotechnology Bulletin, 2020, 36(8): 69-78. |
[11] | GU Han-qi, LIU Ran, SHAO Ling-zhi, XU Yan-yan, WANG Dong-yan, ZHANG Dong-mei, LI Jie. Study on the Tolerance of Saccharomyces cerevisiae Strain to Phenolic Inhibitors [J]. Biotechnology Bulletin, 2020, 36(6): 136-142. |
[12] | LI Jia-xiu, CAI Qian-ru, WU Jie-qun. Research Progresses on the Synthetic Biology of Terpenes in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2020, 36(12): 199-207. |
[13] | CAO Wen-yan, WANG Xin-ning, SHEN Yu, LI Zai-lu, BAO Xiao-ming. Research Advances on Transcription Factor Yrr1p of Pleiotropic Drug Resistance in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2020, 36(11): 148-154. |
[14] | CHEN He-feng, ZHU Chao-yi, LI Shuang. Expression Vector Adaptation of Valencene-producing Saccharomyces cerevisiae and Optimization of Fermentation Carbon and Nitrogen Sources [J]. Biotechnology Bulletin, 2020, 36(1): 209-219. |
[15] | HUANG Zhen-jie, CHEN You-qiang, XUE Ting. Improving the Tolerance of Saccharomyces cerevisiae to Ethanol by the Over-expression of Inositol-3-phosphate Synthase Gene INO1 [J]. Biotechnology Bulletin, 2019, 35(3): 87-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||