Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (3): 45-53.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0989
Previous Articles Next Articles
ZHAO Xu-dong1, 2, HUANG Yong-zhi1, BI Yan-zhen2, DONG Fa-ming1
Received:
2019-09-24
Online:
2020-03-26
Published:
2020-03-17
ZHAO Xu-dong, HUANG Yong-zhi, BI Yan-zhen, DONG Fa-ming. Strategies for Efficient Exogenous Gene Expression in Transgenic Animals[J]. Biotechnology Bulletin, 2020, 36(3): 45-53.
[1] 黄雅琼, 邓彦飞, 邓海莹, 等. 基因工程在转基因动物领域的应用现状及展望[J]. 广西农业生物科学, 2008, 27(4):488-491. [2] West J, Gill WW.Genome editing in large animals[J]. Journal of Equine Veterinary Science, 2016, 41:1-6. [3] Cooper CA, Tizard ML, Stanborough T, et al.Overexpressing ovotransferrin and avian β-defensin-3 improves antimicrobial capacity of chickens and poultry products[J]. Transgenic Research, 2019, 28(1):51-76. [4] Cui D, Li J, Zhang L, et al.Generation of bi-transgenic pigs overexpressing human lactoferrin and lysozyme in milk[J]. Transgenic Research, 2015, 24(2):365-373. [5] Ganga R, Tibbetts SM, Wall CL, et al.Influence of feeding a high plant protein diet on growth and nutrient utilization to combined ‘all-fish’growth-hormone transgenic diploid and triploid Atlantic salmon(Salmo salar L.)[J]. Aquaculture, 2015, 446:272-282. [6] Westphal T, Reuter G.Recombinogenic effects of suppressors of position-effect variegation in Drosophila[J]. Genetics, 2002, 160(2):609-621. [7] 李昊, 陈胜男, 李松美, 等. 利用CRISPR/Cas9技术产生肌肉特异表达Cas9的小鼠胚胎[J]. 中国实验动物学报, 2019, 27(3):271-277. [8] 张超, 石宁宁, 高景波, 等. 猪 Rosa26 位点敲入 Loxp 修饰的 hCD55 成纤维细胞系的建立[J]. 农业生物技术学报, 2018, 26(6):1074-1083. [9] 朱哲, 胡沛男, 李伟明, 等. 利用CRISPR/Cas9构建斑马鱼tbx20基因突变体及其功能分析[J]. 上海海洋大学学报, 2019, 28(1):4-12. [10] Friedrich G, Soriano P.Promoter traps in embryonic stem cells:a genetic screen to identify and mutate developmental genes in mice[J]. Genes & Development, 1991, 5(9):1513-1523. [11] Zambrowicz BP, Imamoto A, Fiering S, et al.Disruption of overlapping transcripts in the ROSA βgeo 26 gene trap strain leads to widespread expression of β-galactosidase in mouse embryos and hematopoietic cells[J]. Proceedings of the National Academy of Sciences, 1997, 94(8):3789-3794. [12] Carreras A, Pane LS, Nitsch R, et al.In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model[J]. BMC Biology, 2019, 17(1):4. [13] Irion S, Luche H, Gadue P, et al.Identification and targeting of the ROSA26 locus in human embryonic stem cells[J]. Nat Biotechnol, 2007, 25(12):1477. [14] Kobayashi T, Kato-Itoh M, Yamaguchi T, et al.Identification of rat Rosa26 locus enables generation of knock-in rat lines ubiquitously expressing tdTomato[J]. Stem Cells and Development, 2012, 21(16):2981-2986. [15] Li X, Yang Y, Bu L, et al.Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing[J]. Cell Research, 2014, 24(4):501. [16] Hippenmeyer S, Youn YH, Moon HM, et al.Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration[J]. Neuron, 2010, 68(4):695-709. [17] Ruan J, Li H, Xu K, et al.Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs[J]. Scientific Reports, 2015, 5:14253. [18] Groth AC, Olivares EC, Thyagarajan B, et al.A phage integrase directs efficient site-specific integration in human cells[J]. Proceedings of the National Academy of Sciences, 2000, 97(11):5995-6000. [19] Olivares EC, Hollis RP, Chalberg TW, et al.Site-specific genomic integration produces therapeutic factor IX levels in mice[J]. Nat Biotechnol, 2002, 20(11):1124. [20] Groth AC, Fish M, Nusse R, et al.Construction of transgenic drosophila by using the site-specific integrase from phage φC31[J]. Genetics, 2004, 166(4):1775-1782. [21] Chalberg TW, Genise HL, Vollrath D, et al.φC31 integrase confers genomic integration and long-term transgene expression in rat retina[J]. Investigative Ophthalmology & Visual Science, 2005, 46(6):2140-2146. [22] Ma Q, Sheng H, Yan J, et al.Identification of pseudo attP sites for phage ϕC31 integrase in bovine genome[J]. Biochemical and Biophysical Research Communications, 2006, 345(3):984-988. [23] Leighton PA, van de Lavoir MC, Diamond JH, et al. Genetic modification of primordial germ cells by gene trapping, gene targeting, and ϕC31 integrase[J]. Molecular Reproduction and Development:Incorporating Gamete Research, 2008, 75(7):1163-1175. [24] Bi YZ, Liu X, Zhang L, et al.Pseudo attP sites in favor of transgene integration and expression in cultured porcine cells identified by streptomyces phage phiC31 integrase[J]. BMC Molecular Biology, 2013, 14(1):20. [25] 毕延震, 刘西梅, 华再东, 等. ΦC31整合酶介导猪基因组定点修饰的探讨[J]. 中国生物化学与分子生物学报, 2014, 30(2):187-193. [26] Bi YZ, Hua Z, Ren H, et al.ФC31 integrase-mediated isolation and characterization of novel safe harbors for transgene expression in the pig genome[J]. International Journal of Molecular Sciences, 2018, 19(1):149. [27] Ma L, Wang Y, Wang H, et al.Screen and verification for transgene integration sites in pigs[J]. Scientific Reports, 2018, 8(1):7433. [28] Sorrell DA, Kolb AF.Targeted modification of mammalian genomes[J]. Biotechnology Advances, 2005, 23(7-8):431-469. [29] Sander JD, Dahlborg EJ, Goodwin MJ, et al.Selection-free zinc-finger-nuclease engineering by context-dependent assembly(CoDA)[J]. Nature Methods, 2010, 8(1):67. [30] Bibikova M, Golic M, Golic KG, et al.Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases[J]. Genetics, 2002, 161(3):1169-1175. [31] Perez-Pinera P, Ousterout DG, Brown MT, et al.Gene targeting to the ROSA26 locus directed by engineered zinc finger nucleases[J]. Nucleic Acids Research, 2011, 40(8):3741-3752. [32] Bedell VM, Wang Y, Campbell JM, et al.In vivo genome editing using a high-efficiency TALEN system[J]. Nature, 2012, 491(7422):114. [33] 李小平. 猪ROSA26的鉴定与靶向修饰[D]. 长春:吉林大学, 2014. [34] Sakuma T, Ochiai H, Kaneko T, et al.Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity[J]. Scientific Reports, 2013, 3:3379. [35] Wu H, Wang Y, Zhang Y, et al.TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis[J]. Proceedings of the National Academy of Sciences, 2015, 112(13):E1530-E1539. [36] Hsu PD, Lander ES, Zhang F.Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6):1262-1278. [37] Pennisi E.The CRISPR craze[J]. Science, 2013, 341(6148):833-836. [38] Deltcheva E, Chylinski K, Sharma CM, et al.CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340):602. [39] Yang H, Wang H, Shivalila CS, et al.One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering[J]. Cell, 2013, 154(6):1370-1379. [40] 阮进学. 利用基因组编辑技术针对猪H11位点的高效定点整合系统的研究[D]. 长春:吉林大学, 2015. [41] Maresca M, Lin VG, Guo N, et al.Obligate ligation-gated recomb-ination(ObLiGaRe):custom-designed nuclease-mediated targe-ted integration through nonhomologous end joining[J]. Genome Research, 2013, 23(3):539-546. [42] Watakabe I, Hashimoto H, Kimura Y, et al.Highly efficient generation of knock-in transgenic medaka by CRISPR/Cas9-mediated genome engineering[J]. Zoological Lett, 2018, 4(1):3. [43] Nakade S, Tsubota T, Sakane Y, et al.Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9[J]. Nature Communications, 2014, 5:5560. [44] Sakuma T, Nakade S, Sakane Y, et al.MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems[J]. Nature Protocols, 2016, 11(1):118. [45] Aida T, Nakade S, Sakuma T, et al.Gene cassette knock-in in mammalian cells and zygotes by enhanced MME[J][J]. BMC Genomics, 2016, 17(1):979. [46] Sakuma T, Takenaga M, Kawabe Y, et al.Homologous recombination-independent large gene cassette knock-in in CHO cells using TALEN and MMEJ-directed donor plasmids[J]. International Journal of Molecular Sciences, 2015, 16(10):23849-23866. [47] Hisano Y, Sakuma T, Nakade S, et al.Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish[J]. Scientific Reports, 2015, 5:8841. [48] Sternberg N, Hamilton D.Bacteriophage P1 site-specific recombination:I. Recombination between loxP sites[J]. Journal of Molecular Biology, 1981, 150(4):467-486. [49] Broach JR, Hicks JB.Replication and recombination functions associated with the yeast plasmid, 2μ circle[J]. Cell, 1980, 21(2):501-508. [50] Rausch H, Lehmann M.Structural analysis of the actinophae ФC31 attachment site[J]. Nucleic Acids Research, 1991, 19(19):5187-5189. [51] Cacciatore JJ, Chasin LA, Leonard EF.Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the Dhfr-based CHO cell selection system[J]. Biotechnology Advances, 2010, 28(6):673-681. [52] Cartwright EJ.Transgenesis Techniques[M]. Humana Press, 2009. [53] Bischof J, Maeda RK, Hediger M, et al.An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases[J]. Proceedings of the National Academy of Sciences, 2007, 104(9):3312-3317. [54] Peters JE, Makarova KS, Shmakov S, et al.Recruitment of CRISPR-Cas systems by Tn7-like transposons[J]. Proceedings of the National Academy of Sciences, 2017, 114(35):E7358-E7366. [55] Strecker J, Ladha A, Gardner Z, et al.RNA-guided DNA insertion with CRISPR-associated transposases[J]. Science, 2019, 365(6448):48-53. [56] Klompe SE, Vo PLH, Halpin-Healy TS, et al.Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration[J]. Nature, 2019, 571:219-225. [57] Suzuki K, Tsunekawa Y, Hernandez-Benitez R, et al.In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration[J]. Nature, 2016, 540(7631):144. [58] Yao X, Wang X, Hu X, et al.Homology-mediated end joining-based targeted integration using CRISPR/Cas9[J]. Cell Research, 2017, 27(6):801. [59] Zhu F, Gamboa M, Farruggio AP, et al.DICE, an efficient system for iterative genomic editing in human pluripotent stem cells[J]. Nucleic Acids Research, 2013, 42(5):e34. [60] de Leon KJ, Antrobus S, Allen PD, et al. A method for validating mutations associated with malignant hyperthermia using CRISPR/Cas9 and dual integrase cassette exchange[J]. Biophysical Journal, 2017, 112(3):98. [61] Ostrowski LE, Hutchins JR, Zakel K, et al.Targeting expression of a transgene to the airway surface epithelium using a ciliated cell-specific promoter[J]. Molecular Therapy, 2003, 8(4):637-645. [62] Bi JX, Wirth M, Beer C, et al.Dynamic characterization of recombinant Chinese hamster ovary cells containing an inducible c-fos promoter GFP expression system as a biomarker[J]. Journal of Biotechnology, 2002, 93(3):231-242. [63] 赵芳, 唐立春, 赵永祥. CMV和SP双启动子增强外源基因在骨骼肌细胞中的特异性表达[J]. 生物技术世界, 2016(4):319. [64] Colella P, Sellier P, Verdera HC, et al.AAV gene transfer with tandem promoter design prevents anti-transgene immunity and provides persistent efficacy in neonate pompe mice[J]. Molecular Therapy-Methods & Clinical Development, 2019, 12:85-101. [65] Brinster RL, Allen JM, Behringer RR, et al.Introns increase transcriptional efficiency in transgenic mice[J]. Proceedings of the National Academy of Sciences, 1988, 85(3):836-840. [66] Lu J, Williams JA, Luke J, et al.A 5'noncoding exon containing engineered intron enhances transgene expression from recombinant AAV vectors in vivo[J]. Human Gene Therapy, 2017, 28(1):125-134. [67] Gallegos JE, Rose AB.The enduring mystery of intron-mediated enhancement[J]. Plant Science, 2015, 237:8-15. [68] Jaeger D, Baier T, Lauersen KJ.Intronserter, an advanced online tool for design of intron containing transgenes[J]. Algal Research, 2019, 42:101588. [69] Antoniou M, Harland L, Mustoe T, et al.Transgenes encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are resistant to heterochromatin-mediated silencing[J]. Genomics, 2003, 82(3):269-279. [70] Boscolo S, Mion F, Licciulli M, et al.Simple scale-up of recombinant antibody production using an UCOE containing vector[J]. New Biotechnology, 2012, 29(4):477-484. [71] 高会贞, 杨国宇, 郭豫杰, 等. 猪染色质开放元件UCOE基因筛选及功能验证[C]. 全国动物生理生化第七届全国代表大会暨第十三次学术交流会论文摘要汇编, 2014. [72] 李琴, 赵春澎, 王小引, 等. 重组CHO细胞中不同启动子对含MAR表达载体转基因表达的影响[J]. 重庆医学, 2017, 46(17):2386-2388. [73] 刘苏, 田浤, 王驰, 等. 弱化抗性标记筛选高表达 CHO 细胞株的方法建立[J]. 中国药科大学学报, 2015, 46(5):617-622. [74] Deykin A, Tikhonov M, Kalmykov V, et al.Transcription termination sequences support the expression of transgene product secreted with milk[J]. Transgenic Research, 2019:1-10. [75] Lu J, Zhang F, Fire AZ, et al.Sequence-modified antibiotic resistance genes provide sustained plasmid-mediated transgene expression in mammals[J]. Molecular Therapy, 2017, 25(5):1187-1198. [76] 王志蕊, 刘西梅, 周荆荣, 等. Cre- LoxP 重组系统删除内源性选择标记基因的效能评价[J]. 中国生物化学与分子生物学报, 2014, 30(2):194-201. [77] Kim SI, Matsumoto T, Kagawa H, et al.Microhomology-assisted scarless genome editing in human iPSCs[J]. Nature Communications, 2018, 9(1):939. |
[1] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[2] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[3] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[4] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[5] | LAI Xin-tong, WANG Ke-lan, YOU Yu-xin, TAN Jun-jie. Recent Advances in CRISPR/Cas-based DNA Base Editing [J]. Biotechnology Bulletin, 2022, 38(6): 1-12. |
[6] | ZHANG Hao, LI Zhe, GUO Kai, HUANG Yan-hua, HAO Yong-ren. Functional Analysis of TvGCN5 Gene Encoding Histone Acetylase from Trichoderma viride Tv-1511 [J]. Biotechnology Bulletin, 2022, 38(5): 136-148. |
[7] | CHEN Ying-dan, ZHANG Yang, XIA Qiang, SUN Hong-xia. Gene Editing Technology of CRISPR/Cas and Its Applications in Microalgae Research [J]. Biotechnology Bulletin, 2022, 38(5): 257-268. |
[8] | HU Xiu-wen, LIU Hua, WANG Yu, TANG Xue-ming, WANG Jin-bin, ZENG Hai-juan, JIANG Wei, LI Hong. Application of CRISPR-Cas System in Nucleic Acid Detection [J]. Biotechnology Bulletin, 2021, 37(9): 266-273. |
[9] | HUANG Yao-hui, JIAO Yue, FU Zhong-wen. Overview and Progress of Japan Safety Management System of Genetically Modified Crops [J]. Biotechnology Bulletin, 2021, 37(3): 99-106. |
[10] | ZUO Ling-li, ZHOU Li-ting, WU Xing-qi, WU Chao-yi, WU Shu-yan. Construction of spvBC Gene Editing Strains of Salmonella typhimurium [J]. Biotechnology Bulletin, 2021, 37(2): 253-260. |
[11] | WANG Kai-kai, WANG Xiao-lu, SU Xiao-yun, ZHANG Jie. Optimization and Application of Double-plasmid CRISPR-Cas9 System in Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(12): 252-264. |
[12] | LIU Jia, WEI Jia-qi, LIU Yu-qin, SHI Ge-ge, GUO Jing. Research on Evolution of Gene Editing Technology Based on Patent Analysis and Social Network Analysis [J]. Biotechnology Bulletin, 2021, 37(12): 274-284. |
[13] | YUE Peng-peng, GUO Jun-fan, YU Hong-hao, FU Can, WANG Xiao-yan, GAO Jin-tao. Efficient Editing of Mouse Galt Gene Based on CRISPR/cas9 System [J]. Biotechnology Bulletin, 2020, 36(8): 235-342. |
[14] | SONG Shao-zheng, LU Rui, ZHANG Ting, HE Zheng-yi, WU Zhao-manqiu, CHENG Yong, ZHOU Ming-ming. Research Progress of CRISPR /Cas9 Gene Editing Technology in Goat and Sheep [J]. Biotechnology Bulletin, 2020, 36(3): 62-68. |
[15] | LI Shu-lei, ZHENG Hong-yan, WANG Lei. Application and Prospect of Gene Editing Technology in Crop Breeding [J]. Biotechnology Bulletin, 2020, 36(11): 209-221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||