Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (3): 29-37.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1207
Previous Articles Next Articles
WU Zhi-sheng, FU Gao-hui, LUO Wen-jun, LIU Jun-jie, CHEN Hui-fang, BAI Yin-shan
Received:
2019-12-11
Online:
2020-03-26
Published:
2020-03-17
WU Zhi-sheng, FU Gao-hui, LUO Wen-jun, LIU Jun-jie, CHEN Hui-fang, BAI Yin-shan. Advances on Efficient and Precise Targeted Foreign DNA Integration[J]. Biotechnology Bulletin, 2020, 36(3): 29-37.
[1] 陈楠楠. CRISPR/Cas9基因编辑技术研究进展[J]. 生物化工, 2019, 5(5):140-143. [2] Bibikova M, Golic M, Golic KG, et al.Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases[J]. Genetics, 2002, 161(3):1169-1175. [3] Ding Q, Lee YK, Schaefer EA, et al.A TALEN genome-editing system for generating human stem cell-based disease models[J]. Cell Stem Cell, 2013, 12(2):238-251. [4] 张启超, 刘龙海, 陈旭, 等. 新型CRISPR/Cas基因编辑系统的研究与应用进展[J]. 蚕业科学, 2018, 44(3):474-480. [5] 张玉苗, 李蓉, 鲁瑶, 等. 基于提高CRISPR/Cas基因编辑效率的研究进展[J]. 热带作物学报, 2019, 40(10):2006-2015. [6] 谢芳艳. 基因编辑技术在基因治疗中的应用进展[J]. 生物化工, 2019, 01(5):162-163. [7] Slaymaker IM, Gao L, Zetsche B, et al.Rationally engineered Cas9 nucleases with improved specificity[J]. Science, 2016, 351(6268):84-88. [8] Cai W, Wang M.Engineering nucleic acid chemistry for precise and controllable CRISPR/Cas9 genome editing[J]. Sci Bull, 2019, 64(24):1841-1849. [9] Zhang X, Xu L, Fan R, et al.Genetic editing and interrogation with Cpf1 and caged truncated pre-tRNA-like crRNA in mammalian cells[J]. Cell Discov, 2018, 4(1):36. [10] Anzalone AV, Randolph PB, Davis JR, et al.Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785):149-157. [11] Strecker J, Ladha A, Gardner Z, et al.RNA-guided DNA insertion with CRISPR-associated transposases[J]. Science, 2019, 365(6448):48-53. [12] Zetsche B, Gootenberg JS, Abudayyeh OO, et al.Cpf1 is a single RNA-Guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771. [13] Kass EM, Lim PX, Helgadottir HR, et al.Robust homology-directed repair within mouse mammary tissue is not specifically affected by Brca2 mutation[J]. Nat Commun, 2016, 7:13241. [14] Iliakis G, Murmann T, Soni A.Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair:Implications for the formation of chromosome translocations[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2015, 793:166-175. [15] Rothkamm K, Kruger I, Thompson LH, et al.Pathways of DNA double-strand break repair during the mammalian cell cycle[J]. Mol Cell Biol, 2003, 23(16):5706-5715. [16] Morita H, Taimatsu K, Yanagi K, et al.Exogenous gene integration mediated by genome editing technologies in zebrafish[J]. Bioengineered, 2017, 8(3):287-295. [17] Jaenisch R.Infection of mouse blastocysts with SV40 DNA:Normal development of the infected embryos and persistence of SV40-specific DNA sequences in the adult animals[J]. Cold Spring Harb Symp Quant Biol, 1975, 39:375-380. [18] Kucherlapati RS, Eves EM, Song KY, et al.Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA[J]. Proc Natl Acad Sci USA, 1984, 81(10):3153-3157. [19] 肖安, 张博. 人工核酸内切酶介导的新一代基因组编辑技术进展[J]. 生物工程学报, 2015, 31(6):917-928. [20] Wright DA, Li T, Yang B, et al.TALEN-mediated genome editing:Prospects and perspectives[J]. Biochem J, 2014, 462(1):15-24. [21] Jinek M, Chylinski K, Fonfara I, et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [22] 陈一欧, 宝颖, 马华峥, 等. 基因编辑技术及其在中国的研究发展[J]. 遗传, 2018, 40(10):900-915. [23] 刘玉彪, 许馨, 曹山虎, 等. 基因编辑技术最新研究进展[J]. 生物技术通报, 2017, 33(6):39-44. [24] Pattanayak V, Lin S, Guilinger JP, et al.High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nat Biotechnol, 2013, 31(9):839-843. [25] Cox D, Gootenberg JS, Abudayyeh OO, et al.RNA editing with CRISPR-Cas13[J]. Science, 2017, 358(6366):1019-1027. [26] 杨帆, 李寅. 新一代基因组编辑系统CRISPR/Cpf1[J]. 生物工程学报, 2017, 33(3):361-371. [27] Mali P, Yang L, Esvelt KM, et al.RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121):823-826. [28] Thyme SB, Schier AF.Polq-Mediated end joining is essential for surviving DNA Double-Strand breaks during early zebrafish development[J]. Cell Rep, 2016, 15(7):1611-1613. [29] Moreno-Mateos MA, Fernandez JP, Rouet R, et al.CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing[J]. Nat Commun, 2017, 8(1):2024. [30] McGrath E, Shin H, Zhang L, et al. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing[J]. Nat Commun, 2019, 10(1):5353. [31] Eid A, Alshareef S, Mahfouz MM.CRISPR base editors:Genome editing without double-stranded breaks[J]. Biochem J, 2018, 475(11):1955-1964. [32] Kankowski S, Forstera B, Winkelmann A, et al.A novel RNA editing sensor tool and a specific agonist determine neuronal protein expression of RNA-Edited glycine receptors and identify a genomic APOBEC1 dimorphism as a new genetic risk factor of epilepsy[J]. Front Mol Neurosci, 2017, 10:439. [33] Zeng D, Li X, Huang J, et al.Engineered Cas9 variant tools expand targeting scope of genome and base editing in rice[J]. Plant Biotechnol J, 2019. doi:10.1111/pbj.13293. [34] Liu Z, Chen M, Chen S, et al.Highly efficient RNA-guided base editing in rabbit[J]. Nat Commun, 2018, 9(1):2717. [35] Sun W, Teng J, Zeng J, et al.The piggyBac-based double-inducible binary vector system:A novel universal platform for studying gene functions and interactions[J]. Plasmid, 2019, 105:102420. [36] 于正洪, 姜恩泽, 张杰明, 等. PiggyBac转座子:人类基因编码研究的新工具[J]. 医学研究生学报, 2014, 27(2):199-202. [37] 张文豪, 李旭, 帅领. PiggyBac转座系统的发展及应用[J]. 发育医学电子杂志, 2018, 6(3):149-153. [38] Klompe SE, Vo P, Halpin-Healy TS, et al.Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration[J]. Nature, 2019, 571(7764):219-225. [39] Urnov FD, Miller JC, Lee YL, et al.Highly efficient endogenous human gene correction using designed zinc-finger nucleases[J]. Nature, 2005, 435(7042):646-651. [40] Bibikova M, Beumer K, Trautman JK, et al.Enhancing gene targeting with designed zinc finger nucleases[J]. Science, 2003, 300(5620):764. [41] Shrivastav M, De Haro LP, Nickoloff JA.Regulation of DNA double-strand break repair pathway choice[J]. Cell Res, 2008, 18(1):134-147. [42] Lieber MR.NHEJ and its backup pathways in chromosomal translocations[J]. Nat Struct Mol Biol, 2010, 17(4):393-395. [43] Merkle FT, Neuhausser WM, Santos D, et al.Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus[J]. Cell Rep, 2015, 11(6):875-883. [44] Yao X, Wang X, Hu X, et al.Homology-mediated end joining-based targeted integration using CRISPR/Cas9[J]. Cell Res, 2017, 27(6):801-814. [45] Sander JD, Joung JK.CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nat Biotechnol, 2014, 32(4):347-355. [46] Maresca M, Lin VG, Guo N, et al.Obligate ligation-gated recombination(ObLiGaRe):Custom-designed nuclease-mediated targeted integration through nonhomologous end joining[J]. Genome Res, 2013, 23(3):539-546. [47] Suzuki K, Tsunekawa Y, Hernandez-Benitez R, et al.In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration[J]. Nature, 2016, 540(7631):144-149. [48] Heyer W, Ehmsen KT, Liu J.Regulation of homologous recombination in eukaryotes[J]. Annu Rev Genet, 2010, 44(1):113-139. [49] Gutschner T, Haemmerle M, Genovese G, et al.Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair[J]. Cell Rep, 2016, 14(6):1555-1566. [50] Zhang JP, Li XL, Li GH, et al.Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage[J]. Genome Biol, 2017, 18(1):35. [51] 聂宇, 乔艳乐, 陈瑶生, 等. 供体同源臂长度对ZFN介导的同源重组效率的影响[J]. 中山大学学报:自然科学版, 2016, 55(4):100-107. [52] 朱娉慧, 罗群, 王曜峰, 等. 同源重组及非同源末端连接修复途径介导的基因编辑:CRISPR技术的认知、应用及展望[J]. 生命科学, 2018, 30(9):1003-1009. [53] Jiricny J.The multifaceted mismatch-repair system[J]. Nat Rev Mol Cell Biol, 2006, 7(5):335-346. [54] Nakade S, Tsubota T, Sakane Y, et al. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9[J]. Nat Commun, 2014, 5(1)1:5560. [55] Britton S, Coates J, Jackson SP.A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair[J]. J Cell Biol, 2013, 202(3):579-595. [56] Auer TO, Del BF.Homology-Independent Integration of Plasmid DNA into the Zebrafish Genome[J]. Methods Mol Biol, 2016, 1451:31-51. [57] He X, Tan C, Wang F, et al.Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair[J]. Nucleic Acids Rre, 2016, 44(9):e85. [58] Shi M, Kawabe Y, Ito A, et al.Targeted knock-in into the OVA locus of chicken cells using CRISPR/Cas9 system with homology-independent targeted integration[J]. J Biosci Bioeng, 2020, 129(3):363-370. [59] McVey M, Lee SE. MMEJ repair of double-strand breaks(director’s cut):Deleted sequences and alternative endings[J]. Trends Genet, 2008, 24(11):529-538. [60] Sakuma T, Nakade S, Sakane Y, et al.MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems[J]. Nat Protoc, 2016, 11(1):118-133. [61] Taleei R, Nikjoo H.Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle[J]. Mutat Res, 2013, 756(1):206-212. |
[1] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[2] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[3] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[4] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[5] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[6] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[7] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[8] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[9] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[10] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[11] | Olalekan Amoo, HU Li-min, ZHAI Yun-gu, FAN Chu-chuan, ZHOU Yong-ming. Regulation of Shoot Branching by BRANCHED1 in Brassica napus Based on Gene Editing Technology [J]. Biotechnology Bulletin, 2022, 38(4): 97-105. |
[12] | DING Ya-qun, DING Ning, XIE Shen-min, HUANG Meng-na, ZHANG Yu, ZHANG Qin, JIANG Li. Construction of Vps28 Knock-out Mice and Model Study of the Impact on Lactation and Immune Traits [J]. Biotechnology Bulletin, 2022, 38(3): 164-172. |
[13] | YAN Jiong, FENG Chen-yi, GAO Xue-kun, XU Xiang, YANG Jia-min, CHEN Zhao-yang. Construction of Homozygous Plin1-knockout Mouse Model and Phenotype Analysis Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2022, 38(3): 173-180. |
[14] | ZHONG Jing, SUN Ling-ling, ZHANG Shu, MENG Yuan, ZHI Yi-fei, TU Li-qing, XU Tian-peng, PU Li-ping, LU Yang-qing. Effect of Knocking Out the Mda5 Gene by CRISPR/Cas9 Technology on the Replication of Newcastle Disease and Infectious Bursal Virus [J]. Biotechnology Bulletin, 2022, 38(11): 90-96. |
[15] | ZONG Mei, HAN Shuo, GUO Ning, DUAN Meng-meng, LIU Fan, WANG Gui-xiang. Production of Marker-free Mutants of Brassica campestris Mediated by CRISPR/Cas9 Through Vacuum Infiltration [J]. Biotechnology Bulletin, 2022, 38(10): 159-163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||