[1] Ran FA, Hsu PD, Wright J, et al.Genome engineering using the CRISPR-Cas9 system[J]. Nature Protocols, 2013, 8(11):2281-2308. [2] Knott GJ, Doudna JA.CRISPR-Cas guides the future of genetic engineering[J]. Science, 2018, 361(6405):866. [3] Kieper SN, Almendros C, Behler J, et al.Cas4 facilitates PAM-compatible spacer selection during CRISPR adaptation[J]. Cell Reports, 2018, 22(13):3377-3384. [4] Hsu PD, Scott DA, Weinstein JA, et al.DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9):827-832. [5] Jinek M, East A, Cheng A, et al.RNA-programmed genome editing in human cells[J]. eLife, 2013, 2:e00471. [6] Hu JH, Miller SM, Geurts MH, et al.Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699):57-63. [7] Teng F, Cui T, Feng G, et al.Repurposing CRISPR-Cas12b for mammalian genome engineering[J]. Cell Discovery, 2018, 4:63. [8] Harrington LB, Burstein D, Chen JS, et al.Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416):839. [9] Liu JJ, Orlova N, Oakes BL, et al.CasX enzymes comprise a distinct family of RNA-guided genome editors[J]. Nature, 2019, 556:218-223. [10] Komor AC, Kim YB, Packer MS, et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424. [11] Kim YB, Komor AC, Levy JM, et al.Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions[J]. Nat Biotechnol, 2017, 35(4):371-376. [12] Komor AC, Zhao KT, Packer MS, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity[J]. Science Advances, 2017, 3(8):eaao4774. [13] Li X, Wang Y, Liu Y, et al.Base editing with a Cpf1-cytidine deaminase fusion[J]. Nat Biotechnol, 2018, 36:324. [14] Gaudelli NM, Komor AC, Rees HA, et al.Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471. [15] East-Seletsky A, O’connell MR, Knight SC, et al.Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016, 538(7624):270-273. [16] Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al.RNA targeting with CRISPR-Cas13[J]. Nature, 2017, 550(7675):280-284. [17] Konermann S, Lotfy P, Brideau NJ, et al.Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors[J]. Cell, 2018, 173(3):665-676. [18] Scotti MM, Swanson MS.RNA mis-splicing in disease[J]. Nature Reviews Genetics, 2016, 17(1):19-32. [19] 王影, 李相敢, 邱丽娟. CRISPR/Cas9基因组定点编辑中脱靶现象的研究进展[J]. 植物学报, 2018, (4):528-541. [20] Ihry RJ, Worringer KA, Salick MR, et al.p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells[J]. Nature Medicine, 2018, 24(7):939-946. [21] Haapaniemi E, Botla S, Persson J, et al.CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response[J]. Nature Medicine, 2018, 24(7):927-930. [22] Cullot G, Boutin J, Toutain J, et al.CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations[J]. Nature Communications, 2019, 10(1):1136-1136. [23] Kosicki M, Tomberg K, Bradley A.Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements[J]. Nat Biotechnol, 2018, 36:765. [24] Kim D, Bae S, Park J, et al.Digenome-seq:genome-wide profiling of CRISPR-Cas9 off-target effects in human cells[J]. Nature Methods, 2015, 12:237-243. [25] Jin S, Zong Y, Gao Q, et al.Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice[J]. Science, 2019, 364(6437):292-295. [26] Rossidis AC, Stratigis JD, Chadwick AC, et al.In utero CRISPR-mediated therapeutic editing of metabolic genes[J]. Nature Medicine, 2018, 24(10):1513-1518. [27] Villiger L, Grisch-Chan HM, Lindsay H, et al.Treatment of a metabolic liver disease by in vivo genome base editing in adult mice[J]. Nature Medicine, 2018, 24(10):1519-1525. [28] Zuo E, Sun Y, Wei W, et al.Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019:eaav9973. [29] Liang P, Xie X, Zhi S, et al.Genome-wide profiling of adenine base editor specificity by EndoV-seq[J]. Nature Communications, 2019, 10(1):67-67. [30] Kim D, Kim DE, Lee G, et al.Genome-wide target specificity of CRISPR RNA-guided adenine base editors[J]. Nat Biotechnol, 2019. [31] Kim K, Ryu SM, Kim ST, et al.Highly efficient RNA-guided base editing in mouse embryos[J]. Nat Biotechnol, 2017, 35:435. [32] Yan S, Tu Z, Liu Z, et al. A huntingtin knockin pig model recapitu-lates features of selective neurodegeneration in huntington’s dise-ase[J]. Cell, 2018, 173(4):989-1002. e13. [33] Yang W, Liu Y, Tu Z, et al.CRISPR/Cas9-mediated PINK1 dele-tion leads to neurodegeneration in rhesus monkeys[J]. Cell Research, 2019, 29(4):334-336. [34] Sheth RU, Yim SS, Wu FL, et al.Multiplex recording of cellular events over time on CRISPR biological tape[J]. Science, 2017, 358(6369):1457-1461. [35] Tang W, Liu DR. Rewritable multi-event analog recording in bacterial and mammalian cells[J]. Science, 2018, 360(6385):eaap8992. [36] Spanjaard B, Hu B, Mitic N, et al.Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars[J]. Nat Biotechnol, 2018, 36(5):469-473. [37] Mikheikin A, Olsen A, Leslie K, et al.DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle[J]. Nature Communications, 2017, 8(1):1665. [38] Rogers ZN, Mcfarland CD, Winters IP, et al.Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice[J]. Nature Genetics, 2018, 50(4):483-486. [39] Eyquem J, Mansilla-Soto J, Giavridis T, et al.Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection[J]. Nature, 2017, 543(7643):113-117. [40] Beyret E, Liao HK, Yamamoto M, et al.Single-dose CRISPR-Cas9 therapy extends lifespan of mice with Hutchinson-Gilford progeria syndrome[J]. Nature Medicine, 2019, 25(3):419-422. [41] Nelson CE, Wu Y, Gemberling MP, et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy[J]. Nature Medicine, 2019, 25(3)427-432. [42] Yin L, Hu S, Mei S, et al.CRISPR/Cas9 inhibits multiple steps of HIV-1 infection[J]. Hum Gene Ther, 2018, 29(11):1264-1276. |