Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (10): 247-255.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1228
Previous Articles Next Articles
WU Yi-xiao1(), Thomas Bissinger2, Yvonne Genzel2, LIU Xu-ping1(
), Udo Reichl2, TAN Wen-Song1(
)
Received:
2019-12-16
Online:
2020-10-26
Published:
2020-11-02
Contact:
LIU Xu-ping,TAN Wen-Song
E-mail:wuyixiao0807@163.com;xupingliu@ecust.edu.cn;wstan@ecust.edu.cn
WU Yi-xiao, Thomas Bissinger, Yvonne Genzel, LIU Xu-ping, Udo Reichl, TAN Wen-Song. Perfusion Process Development of MDCK Suspension Cells for Influenza Virus Production[J]. Biotechnology Bulletin, 2020, 36(10): 247-255.
Group | Trypsin concentration/(U·mL-1) | MOI |
---|---|---|
HCD1 | 30 | 0.1 |
HCD2 | 20 | 0.1 |
HCD3 | 20 | 0.001 |
Group | Trypsin concentration/(U·mL-1) | MOI |
---|---|---|
HCD1 | 30 | 0.1 |
HCD2 | 20 | 0.1 |
HCD3 | 20 | 0.001 |
技术开发流程 | 技术成果 | 瓶颈与展望 |
---|---|---|
病毒驯化 | 加快病毒复制,减小工作种毒体积,增加种毒感染性。 | / |
初步建立批培养流感病毒生产平台 | 悬浮生长,细胞密度至千万级别,病毒产量位于前列 | / |
高密度培养可行性分析 | 细胞密度可至四千万,病毒产量突破4 log10(HAU/100 μL),建立scale-down模型 | 由于体系限制最高支持五千万的细胞密度,可进一步设计和优化;灌注过程为半连续,与反应器连续过程仍存差异 |
灌注培养生物反应器验证 | 病毒产量突破4 log10(HAU/100 μL),目前最高,且提高了单细胞病毒产率。 | ATF存在病毒透过情况;需手动更改灌注速率,无实现自动化控制;副产物累积对病毒产量的潜在影响 |
最终:建立了高效的MDCK细胞高密度培养的流感病毒生产平台 |
技术开发流程 | 技术成果 | 瓶颈与展望 |
---|---|---|
病毒驯化 | 加快病毒复制,减小工作种毒体积,增加种毒感染性。 | / |
初步建立批培养流感病毒生产平台 | 悬浮生长,细胞密度至千万级别,病毒产量位于前列 | / |
高密度培养可行性分析 | 细胞密度可至四千万,病毒产量突破4 log10(HAU/100 μL),建立scale-down模型 | 由于体系限制最高支持五千万的细胞密度,可进一步设计和优化;灌注过程为半连续,与反应器连续过程仍存差异 |
灌注培养生物反应器验证 | 病毒产量突破4 log10(HAU/100 μL),目前最高,且提高了单细胞病毒产率。 | ATF存在病毒透过情况;需手动更改灌注速率,无实现自动化控制;副产物累积对病毒产量的潜在影响 |
最终:建立了高效的MDCK细胞高密度培养的流感病毒生产平台 |
[1] | Manini I, Trombetta CM, Lazzeri G, et al. Egg-independent influenza vaccines and vaccine candidates[J]. Vaccines(Basel), 2017,5(3):18. |
[2] |
Girard MP, Tam JS, Assossou OM, et al. The 2009 A(H1N1)influenza virus pandemic:A review[J]. Vaccine, 2010,28(31):4895-4902.
URL pmid: 20553769 |
[3] |
McLean KA, Goldin S, Nannei C, et al. The 2015 global production capacity of seasonal and pandemic influenza vaccine[J]. Vaccine, 2016,34(45):5410-5413.
URL pmid: 27531411 |
[4] |
Yamayoshi S, Kawaoka Y. Current and future influenza vaccines[J]. Nat Med, 2019,25(2):212-220.
URL pmid: 30692696 |
[5] | Konstantinov K, Goudar C, Ng M, et al. The “Push-to-Low” approach for optimization of high-density perfusion cultures of animal cells[J]. Cell Culture Engineering, 2006,101:75-98. |
[6] | Tapia F, Vazquez-Ramirez D, Genzel Y, et al. Bioreactors for high cell density and continuous multi-stage cultivations:options for process intensification in cell culture-based viral vaccine production[J]. Appl Microbiol Biotechnol, 2016,100(5):2121-2132. |
[7] | Bissinger T, Fritsch J, Mihut A, et al. Semi-perfusion cultures of suspension MDCK cells enable high cell concentrations and efficient influenza A virus production[J]. Vaccine, 2019,37(47):7003-7010. |
[8] |
Granicher G, Coronel J, Pralow A, et al. Vaccine, 2019,37(47):7019-7028.
URL pmid: 31005427 |
[9] | Genzel Y, Vogel T, Buck J, et al. High cell density cultivations by alternating tangential flow(ATF)perfusion for influenza A virus production using suspension cells[J]. Vaccine, 2014,32(24):2770-2781. |
[10] |
Petiot E, Jacob D, Lanthier S, et al. Metabolic and kinetic analyses of influenza production in perfusion HEK293 cell culture[J]. BMC Biotechnol, 2011,11:84.
URL pmid: 21884612 |
[11] |
Genzel Y, Reichl U. Continuous cell lines as a production system for influenza vaccines[J]. Expert Rev Vaccines, 2009,8(12):1681-1692.
URL pmid: 19943763 |
[12] | 黄锭, 刘旭平, 范里, 等. 感染时间对MDCK细胞中H1N1甲型流感病毒扩增过程的影响[J]. 生物技术通报, 2015,31(11):243-250. |
Huang D, Liu XP, Li F, et al. Effects of TOI on H1N1 virus propagation in MDCK cell culture[J]. Biotechnology Bulletin, 2015,31(11):243-250. | |
[13] | Kalbfuss B, Knöchlein A, Kröber T, et al. Monitoring influenza virus content in vaccine production:Precise assays for the quantitation of hemagglutination and neuraminidase activity[J]. Biologicals, 2008,36(3):145-161. |
[14] | Genzel Y, Reichl U. Vaccine production[M]//Animal Cell Biotechnology:Methods and Protocols. Totowa NJ: Humana Press, 2007: 457-473. |
[15] |
Milian E, Kamen AA. Current and emerging cell culture manufacturing technologies for influenza vaccines[J]. Biomed Res Int, 2015: 504831.
URL pmid: 33150167 |
[16] | 谢盼, 叶倩, 刘旭平, 等. 流感病毒生产的维持培养基开发及细胞代谢特征分析[J]. 生物技术通报, 2019,35(5):133-139. |
Xie P, Ye Q, Liu XP, et al. Development of maintenance medium using for influenza virus production and analysis of cellular metabolic characteristics[J]. Biotechnology Bulletin, 2019,35(5):133-139. | |
[17] |
Gallo-Ramirez LE, Nikolay A, Genzel Y, et al. Bioreactor concepts for cell culture-based viral vaccine production[J]. Expert Rev Vaccines, 2015,14(9):1181-1195.
doi: 10.1586/14760584.2015.1067144 URL pmid: 26178380 |
[18] |
Frensing T, Pflugmacher A, Bachmann M, et al. Impact of defective interfering particles on virus replication and antiviral host response in cell culture-based influenza vaccine production[J]. Appl Microbiol Biotechnol, 2014,98(21):8999-9008.
URL pmid: 25132064 |
[19] |
Le Ru A, Jacob D, Transfiguracion J, et al. Scalable production of influenza virus in HEK-293 cells for efficient vaccine manufacturing[J]. Vaccine, 2010,28(21):3661-3671.
URL pmid: 20347632 |
[20] |
Genzel Y, Dietzsch C, Rapp E, et al. MDCK and vero cells for influenza virus vaccine production:a one-to-one comparison up to lab-scale bioreactor cultivation[J]. Appl Microbiol Biotechnol, 2010,88(2):461-475.
URL pmid: 20617311 |
[21] | Nikolay A, Leon A, Schwamborn K, et al. Process intensification of EB66 cell cultivations leads to high-yield yellow fever and Zika virus production[J]. Appl Microbiol Biotechnol, 2018,102(20):8725-8737. |
[22] | Huang D, Peng WJ, Ye Q, et al. Serum-free suspension culture of MDCK cells for production of influenza H1N1 vaccines[J]. PLoS One, 2015,10(11):e0141686. |
[23] |
Lohr V, Genzel Y, Behrendt I, et al. A new MDCK suspension line cultivated in a fully defined medium in stirred-tank and wave bioreactor[J]. Vaccine, 2010,28(38):6256-6264.
URL pmid: 20638458 |
[24] | Wolf MKF, Lorenz V, Karst DJ, et al. Development of a shake tube-based scale-down model for perfusion cultures[J]. Biotechnology and Bioengineering, 2018,115(11):2703-2713. |
[25] |
Wang H, Guo S, Li Z, et al. Suspension culture process for H9N2 avian influenza virus(strain Re-2)[J]. Archives of Virology, 2017,162(10):3051-3059.
doi: 10.1007/s00705-017-3460-8 URL pmid: 28685290 |
[1] | BAI Chun-li, YE Qian, JI A-mei, LIU Xu-ping, ZHANG Xu, LIU Zhi-liang, ZHU Ming-long, ZHAO Liang, TAN Wen-song. Stability of Suspended MDCK Cells for Avian Influenza Virus Production [J]. Biotechnology Bulletin, 2020, 36(10): 72-79. |
[2] | XIE Pan, YE Qian, LIU Xu-ping, TAN Wen-song. Development of Maintenance Medium Using for Influenza Virus Production and Analysis of Cellular Metabolic Characteristics [J]. Biotechnology Bulletin, 2019, 35(5): 133-139. |
[3] | QIU Shu-xing, YIN Xing, SU Shu-juan, YIN Jun-lei, ZHANG Jia-you, LIU Xue-he, JIA Kun-yi, YANG Xiao-ming. Bioinformatics Analysis of the Extracellular Region of NA Protein in Novel H7N9 Avian Influenza Virus and Preparation of Polyclonal Antibodies [J]. Biotechnology Bulletin, 2019, 35(12): 85-93. |
[4] | MA Qi-cai, WU Wen-li, MA Fu-long, PAN He-ping. Optimization of Culture Conditions for MDCK Cell Micro-carriers [J]. Biotechnology Bulletin, 2018, 34(12): 90-95. |
[5] | Lü Qinfeng, Luo Peng, He Lei, Yang Yongyao, Zheng Wei, Li Li, Wu Zhonghua. The Establishment of FAST-LAMP Method for Detecting Influenza A(H1N1)Virus [J]. Biotechnology Bulletin, 2015, 31(5): 78-83. |
[6] | Huang Ding, Liu Xuping, Fan Li, Zhao Liang, Tan Wensong, Chen Ze. Effects of TOI on H1N1 Virus Propagation in MDCK Cell Culture [J]. Biotechnology Bulletin, 2015, 31(11): 243-250. |
[7] | Zhang Guofang, Li Zhenzhen, Yao Weili, Wang Lijun, Zhu Xianming,. High Throughput Drug Screening on Protein PAN of Influenza Virus [J]. Biotechnology Bulletin, 2014, 0(2): 181-186. |
[8] | Han Qinggong, Zheng Yushu. Research Advance of RNAi in Anti-influenza Virus [J]. Biotechnology Bulletin, 2014, 0(12): 55-60. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 438
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||