Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (3): 115-124.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1027
Previous Articles Next Articles
WANG Jie(), CAI Yu-meng, ZHANG Nan, ZHANG Ya-li()
Received:
2020-08-14
Online:
2021-03-26
Published:
2021-04-02
Contact:
ZHANG Ya-li
E-mail:2935150582@qq.com;zhangyali@cau.edu.cn
WANG Jie, CAI Yu-meng, ZHANG Nan, ZHANG Ya-li. Regulatory Factors and Molecular Mechanism of Sucrose Transporters’ Expressions in Plant[J]. Biotechnology Bulletin, 2021, 37(3): 115-124.
[1] |
Lalonde S, Boles E, Hellmann H, et al. The dual function of sugar carriers. Transport and sugar sensing[J]. Plant Cell, 1999,11(4):707-726.
pmid: 10213788 |
[2] | Sauer N. Molecular physiology of higher plant sucrose transporters[J]. FEBS Lett, 2007,581(12):2309-2317. |
[3] | Riesmeier JW, Willmitzer L, Frommer WB. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast[J]. EMBO J, 1992,11(13):4705-4713. |
[4] | Reinders A, Ward JM. Functional characterization of the alpha-glucoside transporter Sut1p from Schizosaccharomyces pombe, the first fungal homologue of plant sucrose transporters[J]. Mol Microbiol, 2001,39(2):445-454. |
[5] | Dinant S, Lemoine R. The phloem pathway:new issues and old debates[J]. Comples Rerdus Biologies, 2010,333(4):307-319. |
[6] | Tang J, Lin J, Zhang BL, et al. Cloning and expression analysis of PpSUT2 encoding a sucrose transporter in pear[J]. Genet Mol Res, 2014,13(4):8932-8945. |
[7] | The Arabidopsis genome. Initiativeanalysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000,408(6814):796-815. |
[8] | Aoki N, Hirose T, Scofield GN, et al. The sucrose transporter gene family in rice[J]. Plant Cell Physiol, 2003,44(3):223-232. |
[9] | 阳江华, 黄德宝, 刘术金, 等. 巴西橡胶树6个蔗糖转运蛋白基因的克隆与序列分析[J]. 热带作物学报, 2007,28(4):32-38. |
Yang JH, Huang DB, Liu SJ, et al. Molecular cloning and sequence analysis of six sucrose transporter genes from Hevea brasiliensis(para rubber tree)[J]. Chinese Journal of Tropical Crops, 2007,28(4):32-38. | |
[10] | Barker L, Kuhn C, Weise A, et al. SUT2, a putative sucrose sensor in sieve elements[J]. Plant Cell, 2000,12(7):1153-1164. |
[11] | Krugel U, Kuhn C. Post-translational regulation of sucrose transporters by direct protein-protein interactions[J]. Front Plant Sci, 2013,4(237):1-7. |
[12] | Kuhn C, Grof CP. Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology, 2010,13(3):288-298. |
[13] | Kuhn C. A comparison of the sucrose transporter systems of different plant species[J]. Plant Biol, 2003,3:215-232. |
[14] | Hackel A, Schauer N, Carrari F, et al. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways[J]. Plant J, 2006,45(2):180-192. |
[15] | Kuhn C, Franceschi V, Schulz A, et al. Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements[J]. Science, 1997,275(5304):1298-1300. |
[16] | Knop C, Stadler R, Sauer N, et al. AmSUT1, a sucrose transporter in collection and transport phloem of the putative symplastic phloem loader Alonsoa meridionalis[J]. Plant Physiol, 2004,134(1):204-214. |
[17] | Leach KA, Tran TM, Slewinski TL, et al. Sucrose transporter2 contributes to maize growth, development, and crop yield[J]. J Integr Plant Biol, 2017,59(6):390-408. |
[18] | Chincinska I, Gier K, Krugel U, et al. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production[J]. Front Plant Sci, 2013,4:26. |
[19] | Ayre BG. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning[J]. Mol Plant, 2011,4(3):377-394. |
[20] |
Stadler R, Truernit E, Gahrtz M, et al. The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis[J]. Plant J, 1999,19(3):269-278.
URL pmid: 10476074 |
[21] | Sivitz AB, Reinders A, Ward JM. Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation[J]. Plant Physiol, 2008,147(1):92-100. |
[22] |
Peng Q, Cai YM, Lai EH, et al. The sucrose transporter MdSUT4. 1 participates in the regulation of fruit sugar accumulation in apple[J]. BMC Plant Biology, 2020,20(1):288-298.
URL pmid: 32571226 |
[23] | Gu JH, Zeng Z, Wang YN. Transcriptome analysis of carbohydrate metabolism genes and molecular regulation of sucrose transport gene LoSUT on the flowering process of developing oriental hybrid lily ‘Sorbonne’ bulb[J]. International Journal of Molecular Sciences, 2020,21(9):3092. |
[24] | 马齐军. 苹果蔗糖转运蛋白MdSUT2. 2应答干旱和盐胁迫调控糖含量的分子机制[D]. 泰安:山东农业大学, 2018. |
Ma QJ. Molecular mechanism by which apple sucrose transporter MdSUT2. 2 involves in regulating sugar content in response to drought and salt stresses[D]. Tai’an:Shandong Agricultural University, 2018. | |
[25] | 杜琳. OsSUT对水稻灌浆生理的分子调控[D]. 福州:福建农林大学, 2010. |
Du L. The role of sucrose transporters OsSUT2 and OsSUT5 in molecular regulation of physiological traits during grain filling period in transgenic Indica Rice(Oryza sativa L.)[D]. Fuzhou:Fujian Agriculture and Forestry University, 2010. | |
[26] | 路静, 马齐军, 刘晓, 等. 苹果蔗糖转运蛋白MdSUT2调控花青苷积累的研究[J]. 园艺学报, 2019,46(1):1-10. |
Lu J, Ma QJ, Liu X, et al. Studies on the regulation of anthocyanin accumulation by apple sucrose transporter MdSUT2[J]. Acta Horticulturae Sinica, 2019,46(1):1-10. | |
[27] | Chang Y, Dai N, Chen H, et al. Regulation of rice sucrose transporter 4 gene expression in response to insect herbivore chewing[J]. J Plant Interact, 2019,14(1):525-532. |
[28] | 黄德宝. 巴西橡胶树蔗糖转运蛋白基因的克隆和表达分析[D]. 海口:海南大学, 2009. |
Huang DB. Molecular cloning and expression analysis of sucrose transporter genes from Hevea brasiliensis[D]. Haikou:Hainan University, 2009 | |
[29] | 李和平. 巴西橡胶树蔗糖转运蛋白基因HbSUT5的表达特性研究[D]. 海口:海南大学, 2010. |
Li HP. Study on expression profiles of sucrose transporter HbSUT5 from Hevea Brasiliensis[D]. Haikou:Hainan University, 2010. | |
[30] | Osnes T, Sandstad O, Skar V, et al. beta-Glucuronidase in common duct bile, methodological aspects, variation of pH optima and relation to gallstones[J]. Scand J Clin Lab Invest, 1997,57(4):307-315. |
[31] | Meyer S, Melzer M, Truernit E, et al. AtSUC3, a gene encoding a new Arabidopsis sucrose transporter, is expressed in cells adjacent to the vascular tissue and in a carpel cell layer[J]. Plant Journal, 2000,24(6):869-882. |
[32] | 王丹丹, 柳洪鹃, 王红霞, 等. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020,46(7):1120-1127. |
Wang DD, Liu HJ, Wang HX, et al. Cloning and functional analysis of the sweet potato sucrose transporter IbSUT3[J]. Acta Agronomica Sinica, 2020,46(7):1120-1127. | |
[33] | 陈娜, 王通, 王冕, 等. 花生蔗糖转运蛋白基因AhSUT1的克隆及其在非生物胁迫下的表达分析[J]. 植物生理学报, 2017,53(7):1215-1224. |
Chen N, Wang T, Wang M, et al. Cloning and expression analysis of sucrose transport protein gene AhSUT1 under abiotic stress conditions in peanut(Arachis hypogaea L)[J]. Plant Physiology Communications, 2017,53(7):1215-1224. | |
[34] | Davies C, Wolf T, Robinson SP. Three putative sucrose transporters are differentially expressed in grapevine tissues[J]. Plant Science, 1999,147(2):93-100. |
[35] | Chiou T, Bush DR. Sucrose is a signal molecule in assimilate partitioning[J]. Proc Natl Acad Sci USA, 1998,95(8):4784-4788. |
[36] | Vaughn MW, Harrington GN, Bush DR. Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem[J]. Proceedings of The National Academy of Sciences of The United States of America, 2002,99(16):10876-10880. |
[37] | 肖红, 张立军, 杜国华, 等. 发育时期和光诱导对拟南芥AtSUC2基因表达的影响[J]. 生物技术通报, 2011(7):60-64. |
Xiao H, Zhang LJ, Du GH, et al. Effect of light induction and developmental stages on expression of AtSUC2 gene in Arabidopsis[J]. Biotechnology Bulletin, 2011(7):60-64. | |
[38] |
Cai YM, Yan J, Li Q, et al. Sucrose transporters of resistant grapevine are involved in stress resistance[J]. Plant Molecular Biology, 2019,100(1-2):111-132.
doi: 10.1007/s11103-019-00847-5 URL pmid: 30806883 |
[39] | 胡梦芸, 李辉, 庞建周, 等. 过量表达蔗糖转运蛋白基因增强转基因小麦的耐旱性[J]. 中国农业科学, 2015,48(8):1473-1483. |
Hu MY, Li H, Pang JZ, et al. Overexpression of sucrose transporter(TaSUT1A)improves drought tolerance in transgenic wheat[J]. Scientia Agricultura Sinica, 2015,48(8):1473-1483. | |
[40] | 张彩霞. 高温影响水稻韧皮部同化物转运及代谢的作用机制及调控[D]. 北京:中国农业科学院, 2018. |
Zhang CX. The Mechanism and regulation underlying the inhibition on the assimilates transport and metabolism in phloem of rice caused by heat stress[D]. Beijing:Chinese Academy of Agricultural Sciences, 2018. | |
[41] | 弓雪, 姜敏, 齐欣, 等. 玉米蔗糖转运蛋白基因ZmSUT4克隆及其低温胁迫下的表达模式[J]. 南方农业学报, 2019,50(6):1165-1172. |
Gong X, Jiang M, Qi X, et al. Cloning of sucrose transporter gene ZmSUT4 from maize and itsexpression analysis under low temperature stress[J]. Journal of Southern Agriculture, 2019,50(6):1165-1172 | |
[42] | Gong X, Liu M, Zhang L, et al. Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA-dependent pathway[J]. Physiologia Plantarum, 2015,153(1):119-136. |
[43] | Ibraheem O, Dealtry G, Roux S, et al. The effect of drought and salinity on the expressional levels of sucrose transporters in rice(Oryza sativa Nipponbare)cultivar plants[J]. Plant Omics, 2011,4(2):68-74. |
[44] | 谢海娟, 叶广继, 王舰, 等. 马铃薯StSUT2基因在烟草中过表达提高其耐盐性[J]. 西南农业学报, 2020,33(4):696-703. |
Xie HJ, Ye GJ, Wang J, et al. Overexpression of potato sucrose transporter2(StSUT2)gene enhances tolerrance of tobacco to salinity[J]. Southwest China Journal of Agricultural Sciences, 2020,33(4):696-703. | |
[45] | Harms K, Wuhner RV, Schulz B, et al. Regulation of two p-type H’-ATPase genes from potato[J]. Plant Molecular Biology, 1994,26(1):979-988. |
[46] | Van HL, Bok-Rye L, Md TI, et al. Antagonistic shifting from abscisic acid- to salicylic acid-mediated sucrose accumulation contributes to drought tolerance in Brassica napus[J]. Environmental and Experimental Botany, 2019,162:38-47. |
[47] | 沙建川, 贾志航, 张鑫, 等. 外源脱落酸对富士苹果果实膨大后期光合产物向果实运输的影响[J]. 应用生态学报, 2019,30(6):1854-1860. |
Shai JC, Jia ZH, Zhang X, et al. Effects of exogenous ABA on translocation of photosynthate to fruit of Fuji apple during late stage of fruit rapid-swelling[J]. Chinese Journal of Applied Ecology, 2019,30(6):1854-1860. | |
[48] | 王丹丹. 甘薯蔗糖转运蛋白基因的克隆及功能分析[D]. 泰安:山东农业大学, 2020. |
Wang DD. Cioning and functional analysis of sweetpotato sucrose transporter genes[D]. Tai’an:Shandong Agricultural University, 2020. | |
[49] |
Rezaul IM, Feng BH, Chen TT, et al. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets[J]. Physiologia Plantarum, 2019,165(3):644-663.
URL pmid: 29766507 |
[50] | Jian HJ, Lu K, Yang B, et al. Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape(Brassica napus L.)[J]. Frontiers in Plant Science, 2016,7:1464. |
[51] | Chincinska IA, Liesche J, Krugel U, et al. Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response[J]. Plant Physiol, 2008,146(2):515-528. |
[52] | Murcia G, Pontin M, Reinoso H, et al. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters[J]. Physiol Plant, 2016,156(3):323-337. |
[53] | Murcia G, Pontin M, Piccoli P. Role of ABA and gibberellin A3 on gene expression pattern of sugar transporters and invertases in Vitis vinifera cv. Malbec during berry ripening[J]. Plant Growth Regulation, 2018,84(2):275-283. |
[54] |
Sauer N, Ludwig A, Knoblauch A. AtSUC8 and AtSUC9 encode functional sucrose transporters, but the closely related AtSUC6 and AtSUC7 genes encode aberrant proteins in different Arabidopsis ecotypes[J]. Plant J, 2004,40(1):120-130.
URL pmid: 15361146 |
[55] |
Sivitz AB, Reinders A, Johnson ME, et al. Arabidopsis sucrose transporter AtSUC9. High-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype[J]. Plant Physiology, 2007,143(1):188-198.
URL pmid: 17098854 |
[56] |
Lasin P, Weise A, Reinders A, et al. Arabidopsis sucrose transporter AtSuc1 introns act as 665strong enhancers of expression.[J]. Plant & Cell Physiology, 2020,61(6):1054-1063.
URL pmid: 32163155 |
[57] | Weise, A, Lalonde S, Kühn C, et al. Introns control expression of sucrose transporter LeSUT1 in trichomes, companion cells and in guard cells[J]. Plant Mol Biol, 2008,68(3):251-262. |
[58] | Bai AN, Lu XD, Li DQ, et al. NF-YB1-regulated expression of sucrose transporters in aleurone facilitates sugar loading to rice endosperm[J]. Cell Research, 2016,26(3):384-388 . |
[59] | Xiong YF, Ren Y, Li W, et al. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice[J]. Journal of experimental Botany, 2019,70(15):3765-3780. |
[60] | 苏军, 单贞, 陈在杰, 等. 异源表达Hvsusiba2基因提高水稻胚乳淀粉含量的研究[J]. 农业生物技术学报, 2018,26(4):585-594. |
Su J, Dan Z, Chen ZJ, et al. Study of heterologous expression Hvsusiba2 gene increasing rice(Oryza sotiva)endosperm starch Contents[J]. Journal of Agricultural Biotechnology, 2018,26(4):585-594. | |
[61] | Wei H, Bausewein A, Greiner S, et al. CiMYB17, a stress-induced chicory R2R3-MYB transcription factor, activates promoters of genes involved in fructan synjournal and degradation[J]. New Phytologist, 2017,215(1):281-298. |
[62] | Ma Q, Sun M, Lu J, et al. Transcription factor areb2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes[J]. Plant Physiology, 2017,174(4):2348-2362. |
[63] |
Wu YF, Lee SK, Yoo Y, et al. Rice transcription factor OsDOF11 modulates sugar transport by promoting expression of Sucrose transporter and SWEET genes[J]. Molecular Plant, 2018,11(6):833-845.
URL pmid: 29656028 |
[64] | Li S, Tian Y, Wu K, et al. Modulating plant growth-metabolism coordination for sustainable agriculture[J]. Nature, 2018,560(7720):595-600. |
[65] |
Roblin G, Sakr S, Bonmort J, et al. Regulation of a plant plasma membrane sucrose transporter by phosphorylation[J]. FEBS Letters, 1998,424(3):165-168.
URL pmid: 9539143 |
[66] | Ransom-Hodgkins WD, Vaughn MW, Bush DR . Protein phosphorylation plays a key role in sucrose-mediated transcriptional regulation of a phloem-specific proton-sucrose symporter[J]. Planta, 2003,217(3):483-489. |
[67] | Xu QY, Yin SJ, Ma Y, et al. Carbon export from leaves is controlled via ubiquitination and phosphorylation of sucrose transporter SUC2[J]. PNAS, 2020,117(11):6223-6230. |
[68] |
Nuhse TS, Stensballe A, Jensen ON, et al. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database[J]. Plant Cell, 2004,16(9):2394-2405.
doi: 10.1105/tpc.104.023150 URL |
[69] |
Veenhoff LM, Heuberger EHML, Poolman B. Quaternary structure and function of transport proteins[J]. Trends in Biochemical Sciences, 2002,27(5):242-249.
doi: 10.1016/s0968-0004(02)02077-7 URL pmid: 12076536 |
[70] |
Reinders A, Schulze W, Kuhn C, et al. Protein-protein interactions between sucrose transporters of different affinities colocalized in the same enucleate sieve element[J]. Plant Cell, 2002,14(7):1567-1577.
URL pmid: 12119375 |
[71] |
Krugel U, Veenhoff LM, Langbein J, et al. Transport and sorting of the solanum tuberosum sucrose transporter SUT1 is affected by posttranslational modification[J]. Plant Cell, 2008,20(9):2497-2513.
doi: 10.1105/tpc.108.058271 URL pmid: 18790827 |
[72] |
Leggewie G, Kolbe A, Lemoine R, et al. Overexpression of the sucrose transporter SoSUT1 in potato results in alterations in leaf carbon partitioning and in tuber metabolism but has little impact on tuber morphology[J]. Planta, 2003,217(1):158-167.
doi: 10.1007/s00425-003-0975-x URL pmid: 12721860 |
[73] |
Krugel U, He HX, Gier K, et al. The potato sucrose transporter StSUT1 interacts with a DRM-associated protein disulfide isomerase[J]. Molecular Plant, 2012,5(1):43-62.
doi: 10.1093/mp/ssr048 URL |
[74] |
Li Y, Li LL, Fan RC. Arabidopsis sucrose transporter SUT4 interacts with cytochrome b5-2 to regulate seed germination in response to sucrose and glucose[J]. Mol Plant, 2012,5(5):1029-1041.
doi: 10.1093/mp/sss001 URL |
[75] | Garg V, Hackel A, Kuhn C. Subcellular targeting of plant sucrose transporters is affected by their oligomeric state[J]. Plants(Basel), 2020,9(2):158. |
[76] | Bourbouloux A, Raymond P, Delrot S. Effects of salicylic acid on sugar and amino aciduptake[J]. Journal of Experimental Botany, 1998,49(319):239-247. |
[1] | LIN Hong-yan, GUO Xiao-rui, LIU Di, LI Hui, LU Hai. Molecular Mechanism of Transcriptional Factor AtbHLH68 in Regulating Cell Wall Development by Transcriptome Analysis [J]. Biotechnology Bulletin, 2023, 39(9): 105-116. |
[2] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[3] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[4] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
[5] | WANG Jia-rui, SUN Pei-yuan, KE Jin, RAN Bin, LI Hong-you. Cloning and Expression Analyses of C-glycosyltransferase Gene FtUGT143 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 204-212. |
[6] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[7] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[8] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[9] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[10] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[11] | MEI Huan, LI Yue, LIU Ke-meng, LIU Ji-hua. Study on the Biosynthesis of l-SLR by Efficient Prokaryotic Expression of Berberine Bridge Enzyme [J]. Biotechnology Bulletin, 2023, 39(7): 277-287. |
[12] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[13] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[14] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[15] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||