Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (1): 57-71.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0728
Previous Articles Next Articles
CHEN Zhi-min1,2(), LI Cui1, WEI Ji-tian1, LI Xin-ran1,2, LIU Yi2(), GUO Qiang1()
Received:
2023-07-31
Online:
2024-01-26
Published:
2024-02-06
Contact:
LIU Yi, GUO Qiang
E-mail:1782315561@qq.com;630923263@qq.com;guoqiang@grass-env.com
CHEN Zhi-min, LI Cui, WEI Ji-tian, LI Xin-ran, LIU Yi, GUO Qiang. Research Progress in the Regulation of Chlorogenic Acid Biosynthesis and Its Application[J]. Biotechnology Bulletin, 2024, 40(1): 57-71.
名称Name | 化学结构Chemical structure | 药理活性Pharmacological activity | 参考文献Reference |
---|---|---|---|
3-咖啡酰奎宁酸 3-caffeoylquinic acid | 抗炎、神经保护、抗自由基、抗肿瘤、调节血糖血脂 | [ | |
4-咖啡酰奎宁酸 4-caffeoylquinic acid | 抗氧化、抗炎 | [ | |
5-咖啡酰奎宁酸 5-caffeoylquinic acid | 抗氧化、神经保护 | [ | |
3-阿魏酰奎宁酸 3-feruloylquinic acid | 抗氧化、抗炎 | [ | |
4-阿魏酰奎宁酸 4-feruloylquinic acid | 抗氧化、抗炎 | [ | |
5-阿魏酰奎宁酸 5-feruloylquinic acid | 抗氧化、抗炎、抗菌、抗糖尿病 | [ | |
1,3-二咖啡酰奎宁酸 1,3-dicaffeoylquinic acid | 抗炎、抗癌 | [ | |
1,5-二咖啡酰奎宁酸 1,5-dicaffeoylquinic acid | 抑制α-葡萄糖苷酶、神经保护 | [ | |
3,4-二咖啡酰奎宁酸 3,4-dicaffeoylquinic acid | 抗炎、抗自由基、抗病毒 | [ | |
3,5-二咖啡酰奎宁酸 3,5-dicaffeoylquinic acid | 抗氧化、抗病毒、抗炎 | [ | |
4,5-二咖啡酰奎宁酸 4,5-dicaffeoylquinic acid | 抗病毒、抗炎、抗自由基、神经保护 | [ | |
1,3,5-三咖啡酰奎宁酸 1,3,5-tricaffeoylquinic acid | 抗氧化、神经保护 | [ | |
3,4,5-三咖啡酰奎宁酸 3,4,5-tricaffeoylquinic acid | 抗病毒 | [ | |
绿原酸甲酯 Methyl chlorogenate | 抗增殖、清除自由基、抗炎 | [ | |
绿原酸乙酯 Chlorogenic ethyl ester | 抗氧化、抑制黑色素 | [ | |
绿原酸丁酯 Chlorogenic acid butyl ester | 抗氧化、抑制黑色素 | [ |
Table 1 Molecular structure and bioactivities of chlorogenic acids
名称Name | 化学结构Chemical structure | 药理活性Pharmacological activity | 参考文献Reference |
---|---|---|---|
3-咖啡酰奎宁酸 3-caffeoylquinic acid | 抗炎、神经保护、抗自由基、抗肿瘤、调节血糖血脂 | [ | |
4-咖啡酰奎宁酸 4-caffeoylquinic acid | 抗氧化、抗炎 | [ | |
5-咖啡酰奎宁酸 5-caffeoylquinic acid | 抗氧化、神经保护 | [ | |
3-阿魏酰奎宁酸 3-feruloylquinic acid | 抗氧化、抗炎 | [ | |
4-阿魏酰奎宁酸 4-feruloylquinic acid | 抗氧化、抗炎 | [ | |
5-阿魏酰奎宁酸 5-feruloylquinic acid | 抗氧化、抗炎、抗菌、抗糖尿病 | [ | |
1,3-二咖啡酰奎宁酸 1,3-dicaffeoylquinic acid | 抗炎、抗癌 | [ | |
1,5-二咖啡酰奎宁酸 1,5-dicaffeoylquinic acid | 抑制α-葡萄糖苷酶、神经保护 | [ | |
3,4-二咖啡酰奎宁酸 3,4-dicaffeoylquinic acid | 抗炎、抗自由基、抗病毒 | [ | |
3,5-二咖啡酰奎宁酸 3,5-dicaffeoylquinic acid | 抗氧化、抗病毒、抗炎 | [ | |
4,5-二咖啡酰奎宁酸 4,5-dicaffeoylquinic acid | 抗病毒、抗炎、抗自由基、神经保护 | [ | |
1,3,5-三咖啡酰奎宁酸 1,3,5-tricaffeoylquinic acid | 抗氧化、神经保护 | [ | |
3,4,5-三咖啡酰奎宁酸 3,4,5-tricaffeoylquinic acid | 抗病毒 | [ | |
绿原酸甲酯 Methyl chlorogenate | 抗增殖、清除自由基、抗炎 | [ | |
绿原酸乙酯 Chlorogenic ethyl ester | 抗氧化、抑制黑色素 | [ | |
绿原酸丁酯 Chlorogenic acid butyl ester | 抗氧化、抑制黑色素 | [ |
Fig. 1 Biosynthesis pathway of chlorogenic acid Schematic cartoon displays four synthetic pathways of chlorogenic acid. PAL: Phenylalanine ammonialyase. C4H: Cinnamic acid 4-hydroxylase. 4CL: 4-coumarate -CoA ligase. C3H: ρ-coumaroylester 3-hydroxylases. HCT: Shikimic acid/quinic acid hydroxycinnamoyl transferase. HQT: Hydroxycinnamoyl-CoA: quinate hydroxycinnamoyl transferase. HCGQT: Hydroxyl cinnamoyl D-glucose: quinate hydroxycinnamoyl transferase. The expression of the synthetic route of chlorogenic acid is explained in the article
[1] |
Shamanthaka SMC, Narasinga RMS. Binding of chlorogenic acid by the isolated polyphenol-free 11 S protein of sunflower(Helianthus annuus)seed[J]. J Agric Food Chem, 1990, 38(12): 2103-2110.
doi: 10.1021/jf00102a001 URL |
[2] |
Lallemand LA, Zubieta C, Lee SG, et al. A structural basis for the biosynthesis of the major chlorogenic acids found in coffee[J]. Plant Physiol, 2012, 160(1): 249-260.
doi: 10.1104/pp.112.202051 pmid: 22822210 |
[3] |
Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA. Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome[J]. Molecules, 2017, 22(3): 358.
doi: 10.3390/molecules22030358 URL |
[4] |
Naveed M, Hejazi V, Abbas M, et al. Chlorogenic acid(CGA): a pharmacological review and call for further research[J]. Biomed Pharmacother, 2018, 97: 67-74.
doi: 10.1016/j.biopha.2017.10.064 URL |
[5] |
Liberato JL, Rosa MN, Miranda MCR, et al. Neuroprotective properties of chlorogenic acid and 4, 5-caffeoylquinic acid from Brazilian arnica(Lychnophora ericoides)after acute retinal ischemia[J]. Planta Med, 2023, 89(2): 183-193.
doi: 10.1055/a-1903-2387 URL |
[6] | Mishchenko O, Kyrychenko I, Gontova T, et al. Research on the phenolic profile, antiradical and anti-inflammatory activity of a thick hydroalcoholic feverfew(Tanacetum parthenium L.) herb extract[J]. ScienceRise Pharm Sci, 2022, 5(39): 91-99. |
[7] |
Wang L, Pan XQ, Jiang LS, et al. The biological activity mechanism of chlorogenic acid and its applications in food industry: a review[J]. Front Nutr, 2022, 9: 943911.
doi: 10.3389/fnut.2022.943911 URL |
[8] | 曹凡, 陈琳, 宋忠兴, 等. 金茵利胆胶囊的高效液相色谱指纹图谱及其抗氧化作用的灰色关联分析[J]. 中南药学, 2022, 20(3): 574-579. |
Cao F, Chen L, Song ZX, et al. Grey correlation analysis of HPLC fingerprint of Jinyin Lidan capsules and their antioxidant in vitro[J]. Cent South Pharm, 2022, 20(3): 574-579. | |
[9] | Li HY, Xiao MF, Pan X, et al. Comparative polypharmacokinetics of nine anti-inflammatory components of Jinyinhua(Lonicerae Japonicae Flos)and Shanyinhua(Lonicerae flos)in mice with p-xylene-induced ear edema[J]. Digit Chin Med, 2023, 6(1): 73-85. |
[10] |
Shamilov AA, Olennikov DN, Pozdnyakov DI, et al. Caucasian blueberry: comparative study of phenolic compounds and neuroprotective and antioxidant potential of Vaccinium myrtillus and Vaccinium arctostaphylos leaves[J]. Life, 2022, 12(12): 2079.
doi: 10.3390/life12122079 URL |
[11] |
Udomwasinakun N, Saha S, Mulet-Cabero AI, et al. Assessment of polyphenols bioaccessibility, stability, and antioxidant activity of white mugwort(Artemisia lactiflora wall.) during static in vitro gastrointestinal digestion[J]. Foods, 2023, 12(5): 949.
doi: 10.3390/foods12050949 URL |
[12] |
Ao XL, Yan JL, Liu SL, et al. Extraction, isolation and identification of four phenolic compounds from Pleioblastus amarus shoots and their antioxidant and anti-inflammatory properties in vitro[J]. Food Chem, 2022, 374: 131743.
doi: 10.1016/j.foodchem.2021.131743 URL |
[13] |
Pereira-Caro G, Ordóñez-Díaz JL, de Santiago E, et al. Antioxidant activity and bio-accessibility of polyphenols in black carrot(Daucus carota L. ssp. sativus var. atrorubens alef.)and two derived products during simulated gastrointestinal digestion and colonic fermentation[J]. Foods, 2021, 10(2): 457.
doi: 10.3390/foods10020457 URL |
[14] |
Oliveira ALS, Carvalho MJ, Oliveira DL, et al. Sugarcane straw polyphenols as potential food and nutraceutical ingredient[J]. Foods, 2022, 11(24): 4025.
doi: 10.3390/foods11244025 URL |
[15] | 曹凡, 宋忠兴, 陈琳, 等. 金茵利胆胶囊的体外抗炎活性评价及其谱效关系[J]. 海军军医大学学报, 2023, 44(4): 418-426. |
Cao F, Song ZX, Chen L, et al. Evaluation for in vitro anti-inflammatory activity of Jinyin Lidan capsule and its spectrum-effect relation[J]. Acad J Nav Med Univ, 2023, 44(4): 418-426. | |
[16] |
Zhou YH, Fu X, Guan YQ, et al. 1, 3-Dicaffeoylquinic acid targeting 14-3-3 tau suppresses human breast cancer cell proliferation and metastasis through IL6/JAK2/PI3K pathway[J]. Biochem Pharmacol, 2020, 172: 113752.
doi: 10.1016/j.bcp.2019.113752 URL |
[17] |
Etemadi-Tajbakhsh N, Faramarzi MA, Delnavazi MR. 1, 5-dicaffeoylquinic acid, an α-glucosidase inhibitor from the root of Dorema ammoniacum D. don[J]. Res Pharm Sci, 2020, 15(5): 429-436.
doi: 10.4103/1735-5362.297845 pmid: 33628284 |
[18] | Xiao HB, Cao X, Wang L, et al. 1, 5-dicaffeoylquinic acid protects primary neurons from amyloid β 1-42-induced apoptosis via PI3K/Akt signaling pathway[J]. Chin Med J, 2011, 124(17): 2628-2635. |
[19] |
Wang F, Kong BLH, Tang YS, et al. Bioassay guided isolation of caffeoylquinic acids from the leaves of Ilex pubescens Hook. et Arn. and investigation of their anti-influenza mechanism[J]. J Ethnopharmacol, 2023, 309: 116322.
doi: 10.1016/j.jep.2023.116322 URL |
[20] |
Park J, Kim Y, Lee C, et al. 3, 5-Dicaffeoylquinic acid attenuates microglial activation-mediated inflammatory pain by enhancing autophagy through the suppression of MCP3/JAK2/STAT3 signaling[J]. Biomed Pharmacother, 2022, 153: 113549.
doi: 10.1016/j.biopha.2022.113549 URL |
[21] |
Wan LX, Zhang JF, Zhen YQ, et al. Isolation, structure elucidation, semi-synthesis, and structural modification of C19-diterpenoid alkaloids from Aconitum apetalum and their neuroprotective activities[J]. J Nat Prod, 2021, 84(4): 1067-1077.
doi: 10.1021/acs.jnatprod.0c01111 URL |
[22] |
Yang Y, Ding YF, Gao H, et al. TCQA, A natural caffeoylquinic acid derivative attenuates H2O2-induced neuronal apoptosis by suppressing phosphorylation of MAPKs signaling pathway[J]. Planta Med, 2022, 88(13): 1132-1140.
doi: 10.1055/a-1683-6361 URL |
[23] |
Pang YL, Lin YS, Wang XQ, et al. Inhibition of abnormally activated HIF-1α-GLUT1/3-glycolysis pathway enhances the sensitivity of hepatocellular carcinoma to 5-caffeoylquinic acid and its derivatives[J]. Eur J Pharmacol, 2022, 920: 174844.
doi: 10.1016/j.ejphar.2022.174844 URL |
[24] |
Yin J, Heo JH, Hwang YJ, et al. Inhibitory activities of phenolic compounds isolated from Adina rubella leaves against 5α-reductase associated with benign prostatic hypertrophy[J]. Molecules, 2016, 21(7): 887.
doi: 10.3390/molecules21070887 URL |
[25] | 段世廉, 唐生安, 秦楠, 等. 金鸡脚化学成分及其抗氧化活性[J]. 中国中药杂志, 2012, 37(10): 1402-1407. |
Duan SL, Tang SA, Qin N, et al. Chemical constituents of Phymatopteris hastate and their antioxidant activity[J]. China J Chin Mater Med, 2012, 37(10): 1402-1407. | |
[26] |
Akihisa T, Kawashima K, Orido M, et al. Antioxidative and melanogenesis-inhibitory activities of caffeoylquinic acids and other compounds from moxa[J]. Chem Biodivers, 2013, 10(3): 313-327.
doi: 10.1002/cbdv.201200357 pmid: 23495149 |
[27] |
Kai K, Wang R, Bi WL, et al. Chlorogenic acid induces ROS-dependent apoptosis in Fusarium fujikuroi and decreases the postharvest rot of cherry tomato[J]. World J Microbiol Biotechnol, 2021, 37(6): 93.
doi: 10.1007/s11274-021-03062-x |
[28] | 张豫丹, 马晓寒, 李俊领, 等. 绿原酸对烟草疫霉的抑制作用及对烟草黑胫病的防治效果研究[J]. 作物杂志, 2022(2): 230-236. |
Zhang YD, Ma XH, Li JL, et al. Inhibitory effect of chlorogenic acid on Phytophthora nicotiana and its control effect on tobacco black shank disease[J]. Crops, 2022(2): 230-236. | |
[29] | 刘晓霞. 三种植物次生物质对美国白蛾生长发育和解毒能力的影响[D]. 东北林业大学, 2020. |
Liu XX. Effects of three plant secondary substances on the growth and detoxification ability of Hyphantria cunea[D]. Northeast Forestry University, 2020. | |
[30] | 潘忠玉, 莫夏娜, 孟香, 等. 绿原酸对美国白蛾幼虫生长发育和解毒相关蛋白活性的影响[J]. 昆虫学报, 2020, 63(9): 1081-1090. |
Pan ZY, Mo XN, Meng X, et al. Effects of chlorogenic acid on the growth and development and detoxification-related(Lepidoptera: Arctiidae)larvae[J]. Acta Entomol Sin, 2020, 63(9): 1081-1090. | |
[31] |
Moyo B, Tavengwa NT, Madala NE. Diverse chemical modifications of the chlorogenic acid composition of Viscum combreticola Engl.: a premise for the state of readiness against excessive sunlight exposure[J]. J Photochem Photobiol B, 2022, 233: 112501.
doi: 10.1016/j.jphotobiol.2022.112501 URL |
[32] |
Yan K, Cui JX, Zhi YB, et al. Deciphering salt tolerance in tetraploid honeysuckle(Lonicera japonica Thunb.) from ion homeostasis, water balance and antioxidant defense[J]. Plant Physiology and Biochemistry, 2023, 195: 266-274
doi: 10.1016/j.plaphy.2023.01.013 URL |
[33] | 辛邵南. 滩涂适生菊芋绿原酸合成途径相关基因响应高温与盐胁迫的机理分析[D]. 南京农业大学, 2019. |
Xin SN. Analysis of mechanism of relative gene responses of high temperature and salt stresses to chlorogenic acid synthesis pathway in jerusalem artichoke growth in tidal flats[D]. Nanjing Agricultural University, 2019. | |
[34] | 马志桃. 绿原酸对草莓采后灰霉病的抑制作用机理研究[D]. 合肥: 合肥工业大学, 2022. |
Ma ZT. Inhibitory mechanism of chlorogenic acid on postharst Botrytis cinerea of strawberry[D]. Hefei: Hefei University of Technology, 2022. | |
[35] |
Jin XX, Su MY, Liang YX, et al. Effects of chlorogenic acid on growth, metabolism, antioxidation, immunity, and intestinal flora of crucian carp(Carassius auratus)[J]. Front Microbiol, 2023, 13: 1084500.
doi: 10.3389/fmicb.2022.1084500 URL |
[36] |
Tan C, Xu QD, Chen N, et al. Cross-linking modifications of different phenolic compounds on myofibrillar protein of common carp[J]. Food Bioprocess Technol, 2023, 16(3): 627-638.
doi: 10.1007/s11947-022-02958-2 |
[37] |
Liu YH, Zhang Y, Bai DY, et al. Dietary supplementation with chlorogenic acid enhances antioxidant capacity, which promotes growth, jejunum barrier function, and cecum microbiota in broilers under high stocking density stress[J]. Animals, 2023, 13(2): 303.
doi: 10.3390/ani13020303 URL |
[38] |
Wang WL, Wen CY, Guo QP, et al. Dietary supplementation with chlorogenic acid derived from Lonicera macranthoides hand-mazz improves meat quality and muscle fiber characteristics of finishing pigs via enhancement of antioxidant capacity[J]. Front Physiol, 2021, 12: 650084.
doi: 10.3389/fphys.2021.650084 URL |
[39] |
Cheng J, Sun N, Zhao X, et al. In vitro screening for compounds derived from traditional Chinese medicines with antiviral activities against porcine reproductive and respiratory syndrome virus[J]. J Microbiol Biotechnol, 2013, 23(8): 1076-1083.
doi: 10.4014/jmb URL |
[40] |
Abaidullah M, Peng SW, Song X, et al. Chlorogenic acid is a positive regulator of MDA5, TLR7 and NF-κB signaling pathways mediated antiviral responses against Gammacoronavirus infection[J]. Int Immunopharmacol, 2021, 96: 107671.
doi: 10.1016/j.intimp.2021.107671 URL |
[41] |
Gao RF, Yang HD, Jing SF, et al. Protective effect of chlorogenic acid on lipopolysaccharide-induced inflammatory response in dairy mammary epithelial cells[J]. Microb Pathog, 2018, 124: 178-182.
doi: 10.1016/j.micpath.2018.07.030 URL |
[42] | 宋丹萍, 张珊, 宋志刚, 等. 绿原酸及其异构体功能比较、结构修饰及在动物上应用的研究进展[J]. 中国畜牧杂志, 2023, 59(1): 10-19. |
Song DP, Zhang S, Song ZG, et al. Research progress on the structural and functional comparison, structural modification of chlorogenic acid and its isomers and application in animals[J]. Chin J Anim Sci, 2023, 59(1): 10-19. | |
[43] |
Park I, Ochiai R, Ogata H, et al. Effects of subacute ingestion of chlorogenic acids on sleep architecture and energy metabolism through activity of the autonomic nervous system: a randomised, placebo-controlled, double-blinded cross-over trial[J]. Br J Nutr, 2017, 117(7): 979-984.
doi: 10.1017/S0007114517000587 URL |
[44] | Kato M, Ochiai R, Kozuma K, et al. Effect of chlorogenic acid intake on cognitive function in the elderly: a pilot study[J]. Evid Based Complement Alternat Med, 2018, 2018: 8608497. |
[45] | 尹泽群. 绿原酸抗认知障碍功能与机理研究[D]. 合肥: 合肥工业大学, 2022. |
Yin ZQ. The investigation on the anti-cognitive impairment effect and the mechanisms by chlorogenic acid[D]. Hefei: Hefei University of Technology, 2022. | |
[46] | Song L, Yang H, Liang D, et al. A chlorogenic acid-loaded hyaluronic acid-based hydrogel facilitates anti-inflammatory and pro-healing effects for diabetic wounds[J]. J Drug Deliv Sci Technol, 2022, 70: 103232. |
[47] |
Gupta A, Atanasov AG, Li YT, et al. Chlorogenic acid for cancer prevention and therapy: current status on efficacy and mechanisms of action[J]. Pharmacol Res, 2022, 186: 106505.
doi: 10.1016/j.phrs.2022.106505 URL |
[48] | 王庆华, 杜婷婷, 张智慧, 等. 绿原酸的药理作用及机制研究进展[J]. 药学学报, 2020, 55(10): 2273-2280. |
Wang QH, Du TT, Zhang ZH, et al. Advances in research on the pharmacological effects and mechanism of action of chlorogenic acid[J]. Acta Pharm Sin, 2020, 55(10): 2273-2280. | |
[49] |
Valiñas MA, Lanteri ML ten Have A, et al. Chlorogenic acid biosynthesis appears linked with suberin production in potato Tuber(Solanum tuberosum)[J]. J Agric Food Chem, 2015, 63(19): 4902-4913.
doi: 10.1021/jf505777p URL |
[50] |
Tang N, Cao ZY, Yang C, et al. A R2R3-MYB transcriptional activator LmMYB15 regulates chlorogenic acid biosynthesis and phenylpropanoid metabolism in Lonicera macranthoides[J]. Plant Sci, 2021, 308: 110924.
doi: 10.1016/j.plantsci.2021.110924 URL |
[51] |
Niggeweg R, Michael AJ, Martin C. Engineering plants with increased levels of the antioxidant chlorogenic acid[J]. Nat Biotechnol, 2004, 22(6): 746-754.
doi: 10.1038/nbt966 pmid: 15107863 |
[52] |
Chen HC, Li QZ, Shuford CM, et al. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis[J]. Proc Natl Acad Sci USA, 2011, 108(52): 21253-21258.
doi: 10.1073/pnas.1116416109 URL |
[53] |
Clé C, Hill LM, Niggeweg R, et al. Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance[J]. Phytochemistry, 2008, 69(11): 2149-2156.
doi: 10.1016/j.phytochem.2008.04.024 URL |
[54] |
Zhao ZC, Gao AP, Luo RX, et al. The different deletion mutation in the phenylalanine ammonia-lyase(PAL)gene affects the peel color of mango(Mangifera indica L.)[J]. Genet Resour Crop Evol, 2022, 69(7): 2301-2306.
doi: 10.1007/s10722-022-01393-8 |
[55] |
Yu Y, Wang YJ, Yu Y, et al. Overexpression of IbPAL1 promotes chlorogenic acid biosynthesis in sweetpotato[J]. Crop J, 2021, 9(1): 204-215.
doi: 10.1016/j.cj.2020.06.003 URL |
[56] |
Zhang CC, Yao XH, Ren HD, et al. Genome-wide identification and characterization of the phenylalanine ammonia-lyase gene family in pecan(Carya illinoinensis)[J]. Sci Hortic, 2022, 295: 110800.
doi: 10.1016/j.scienta.2021.110800 URL |
[57] |
Zhang BX, Lewis KM, Abril A, et al. Structure and function of the cytochrome P450 monooxygenase cinnamate 4-hydroxylase from Sorghum bicolor[J]. Plant Physiol, 2020, 183(3): 957-973.
doi: 10.1104/pp.20.00406 URL |
[58] |
Cheng SY, Yan JP, Meng XX, et al. Characterization and expression patterns of a cinnamate-4-hydroxylase gene involved in lignin biosynthesis and in response to various stresses and hormonal treatments in Ginkgo biloba[J]. Acta Physiol Plant, 2017, 40(1): 7.
doi: 10.1007/s11738-017-2585-4 |
[59] |
Karlson CKS, Mohd Noor SN, Khalid N, et al. CRISPRi-mediated down-regulation of the cinnamate-4-hydroxylase(C4H)gene enhances the flavonoid biosynthesis in Nicotiana tabacum[J]. Biology, 2022, 11(8): 1127.
doi: 10.3390/biology11081127 URL |
[60] |
Alariqi M, Ramadan M, Wang QQ, et al. Cotton 4-coumarate-CoA ligase 3 enhanced plant resistance to Verticillium dahliae by promoting jasmonic acid signaling-mediated vascular lignification and metabolic flux[J]. Plant J, 2023, 115(1): 190-204.
doi: 10.1111/tpj.v115.1 URL |
[61] |
Li MZ, Guo LL, Wang YR, et al. Molecular and biochemical characterization of two 4-coumarate: CoA ligase genes in tea plant(Camellia sinensis)[J]. Plant Mol Biol, 2022, 109(4/5): 579-593.
doi: 10.1007/s11103-022-01269-6 |
[62] |
Wang YY, Guo LH, Zhao YJ, et al. Systematic analysis and expression profiles of the 4-coumarate: CoA ligase(4CL)gene family in pomegranate(Punica granatum L.)[J]. Int J Mol Sci, 2022, 23(7): 3509.
doi: 10.3390/ijms23073509 URL |
[63] |
Ma ZH, Nan XT, Li WF, et al. Comprehensive genomic identification and expression analysis 4CL gene family in apple[J]. Gene, 2023, 858: 147197.
doi: 10.1016/j.gene.2023.147197 URL |
[64] |
Yang YH, Zhang ZY, Li RF, et al. RgC3H involves in the biosynthesis of allelopathic phenolic acids and alters their release amount in Rehmannia glutinosa roots[J]. Plants, 2020, 9(5): 567.
doi: 10.3390/plants9050567 URL |
[65] | 朱冉冉, 吉雪花, 张中荣, 等. 辣椒C3H转录因子家族的生物信息学分析[J]. 分子植物育种, 2020, 18(6): 1784-1791. |
Zhu RR, Ji XH, Zhang ZR, et al. Bioinformatics analysis of Capsicum C3H transcription factor family[J]. Mol Plant Breed, 2020, 18(6): 1784-1791. | |
[66] | 李洋, 唐雪冰, 李晓峰, 等. NtC3H基因对烟草类黄酮及绿原酸合成的影响[J]. 中国烟草科学, 2016, 37(1): 8-13. |
Li Y, Tang XB, Li XF, et al. The influence of NtC3H on the synthesis of flavonoids and chlorogenic acid in tobacco[J]. Chin Tob Sci, 2016, 37(1): 8-13. | |
[67] |
Sun F, Ahmad N, Jin LB, et al. Genome-wide investigation of Hydroxycinnamoyl CoA: Shikimate Hydroxycinnamoyl Transferase(HCT)gene family in Carthamus tinctorius L[J]. Not Bot Horti Agrobo, 2021, 49(3): 12489.
doi: 10.15835/nbha49312489 URL |
[68] |
Chao N, Qi Q, Li S, et al. Characterization and functional analysis of the Hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase(HCT)gene family in poplar[J]. PeerJ, 2021, 9: e10741.
doi: 10.7717/peerj.10741 URL |
[69] |
Hoffmann L, Maury S, Martz F, et al. Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism[J]. J Biol Chem, 2003, 278(1): 95-103.
doi: 10.1074/jbc.M209362200 pmid: 12381722 |
[70] | 李洋, 李明, 岳玮, 等. 烟草NtHCT基因对次生代谢物质绿原酸和类黄酮合成的影响[J]. 中国烟草学报, 2015, 21(6): 127-131. |
Li Y, Li M, Yue W, et al. Effect of NtHCT gene on synthesis of chlorogenic acid and flavonoid in tobacco[J]. Acta Tabacaria Sin, 2015, 21(6): 127-131. | |
[71] |
Cardenas CL, Costa MA, Laskar DD, et al. RNAi modulation of chlorogenic acid and lignin deposition in Nicotiana tabacum and insufficient compensatory metabolic cross-talk[J]. J Nat Prod, 2021, 84(3): 694-706.
doi: 10.1021/acs.jnatprod.1c00054 pmid: 33687206 |
[72] |
Serrani-Yarce JC, Escamilla-Trevino L, Barros J, et al. Targeting hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase for lignin modification in Brachypodium distachyon[J]. Biotechnol Biofuels, 2021, 14(1): 50.
doi: 10.1186/s13068-021-01905-1 pmid: 33640016 |
[73] | Mathatha K, Mwaba I, Mathomu LM, et al. SMRT sequencing and characterization of putative hydroxycinnamoyl-CoA: Quinate/shikimate acid hydroxycinnamoyl transferase(HQT/HCT)genes responsible for biosynthesis of structurally diverse chlorogenic acids in Bidens pilosa[J]. S Afr N J Bot, 2023, 152: 92-105. |
[74] | Moglia A, Acquadro A, Eljounaidi K, et al. Genome-wide identification of BAHD acyltransferases and in vivo characterization of HQT-like enzymes involved in caffeoylquinic acid synthesis in globe artichoke[J]. Front Plant Sci, 2016, 7: 1424. |
[75] |
Li YQ, Kong DX, Bai M, et al. Correlation of the temporal and spatial expression patterns of HQT with the biosynthesis and accumulation of chlorogenic acid in Lonicera japonica flowers[J]. Hortic Res, 2019, 6: 73.
doi: 10.1038/s41438-019-0154-2 |
[76] |
Liu Q, Liu Y, Xu YC, et al. Overexpression of and RNA interference with hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase affect the chlorogenic acid metabolic pathway and enhance salt tolerance in Taraxacum antungense Kitag[J]. Phytochem Lett, 2018, 28: 116-123.
doi: 10.1016/j.phytol.2018.10.003 URL |
[77] |
Yamada Y, Sato F. Transcription factors in alkaloid engineering[J]. Biomolecules, 2021, 11(11): 1719.
doi: 10.3390/biom11111719 URL |
[78] |
Xiao QQ, Li ZQ, Qu MM, et al. LjaFGD: Lonicera japonica functional genomics database[J]. J Integr Plant Biol, 2021, 63(8): 1422-1436.
doi: 10.1111/jipb.v63.8 URL |
[79] |
Ji NN, Wang J, Li YF, et al. Involvement of PpWRKY70 in the methyl jasmonate primed disease resistance against Rhizopus stolonifer of peaches via activating phenylpropanoid pathway[J]. Postharvest Biol Technol, 2021, 174: 111466.
doi: 10.1016/j.postharvbio.2021.111466 URL |
[80] | Liu Q, Zhou W, Ruan QY, et al. Overexpression of TaWRKY14 transcription factor enhances accumulation of chlorogenic acid in Taraxacum antungense Kitag and increases its resistance to powdery mildew[J]. Plant Cell Tissue Organ Cult PCTOC, 2020, 143(3): 665-679. |
[81] |
Zhang J, Yang Y, Zheng KJ, et al. Genome-wide association studies and expression-based quantitative trait loci analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense-responsive transcription factors in Populus[J]. New Phytol, 2018, 220(2): 502-516.
doi: 10.1111/nph.15297 pmid: 29992670 |
[82] | 王中, 赵利杰, 刘萍萍, 等. 烟草NtMYB59基因克隆及过表达对绿原酸含量的影响[J]. 烟草科技, 2021, 54(5): 1-7. |
Wang Z, Zhao LJ, Liu PP, et al. Cloning and over-expressing tobacco NtMYB59 gene and the effects on chlorogenic acid content[J]. Tob Sci Technol, 2021, 54(5): 1-7. | |
[83] | 代丽丽. 转AtMYB12基因提高马铃薯中绿原酸含量的研究[D]. 泰安: 山东农业大学, 2013. |
Dai LL. Research of chlorogenic acid-improved transgenic potato with AtMYB12[D]. Tai'an: Shandong Agricultural University, 2013. | |
[84] |
Ma DW, Reichelt M, Yoshida K, et al. Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar[J]. Plant J, 2018, 96(5): 949-965.
doi: 10.1111/tpj.2018.96.issue-5 URL |
[85] |
Li MZ, Li YZ, Guo LL, et al. Functional characterization of tea(Camellia sinensis)MYB4a transcription factor using an integrative approach[J]. Front Plant Sci, 2017, 8: 943.
doi: 10.3389/fpls.2017.00943 URL |
[86] | Docimo T, Francese G, Ruggiero A, et al. Phenylpropanoids accumulation in eggplant fruit: characterization of biosynthetic genes and regulation by a MYB transcription factor[J]. Front Plant Sci, 2016, 6: 1233. |
[87] | 陈帅. 烟草类黄酮代谢途径中关键酶CHS基因与R2R3 MYB类转录抑制因子功能研究[D]. 雅安: 四川农业大学, 2017. |
Chen S. Functional analysis of CHS genes and R2R3 MYB repressors related to flavonoid biosynthesis pathway in Nicotiana tabacum[D]. Ya'an: Sichuan Agricultural University, 2017. | |
[88] |
Liu Q, Li L, Cheng HT, et al. The basic helix-loop-helix transcription factor TabHLH1 increases chlorogenic acid and luteolin biosynthesis in Taraxacum antungense Kitag[J]. Hortic Res, 2021, 8(1): 195.
doi: 10.1038/s41438-021-00630-y |
[89] |
Wang Z, Yang JC, Gao Q, et al. The transcription factor NtERF13a enhances abiotic stress tolerance and phenylpropanoid compounds biosynthesis in tobacco[J]. Plant Sci, 2023, 334: 111772.
doi: 10.1016/j.plantsci.2023.111772 URL |
[90] |
Zha LP, Liu S, Liu J, et al. DNA methylation influences chlorogenic acid biosynthesis in Lonicera japonica by mediating LjbZIP8 to regulate phenylalanine ammonia-lyase 2 expression[J]. Front Plant Sci, 2017, 8: 1178.
doi: 10.3389/fpls.2017.01178 URL |
[91] |
Chen YC, Xu N, Du LH, et al. Light plays a critical role in the accumulation of chlorogenic acid in Lonicera macranthoides Hand.-Mazz[J]. Plant Physiol Biochem, 2023, 196: 793-806.
doi: 10.1016/j.plaphy.2023.02.016 URL |
[92] |
Negi S, Bhakta S, Ganapathi TR, et al. MusaNAC29-like transcription factor improves stress tolerance through modulation of phytohormone content and expression of stress responsive genes[J]. Plant Sci, 2023, 326: 111507.
doi: 10.1016/j.plantsci.2022.111507 URL |
[93] | Atak A, Göksel Z, Söylemezoğlu G. Changes in post-disease amounts of some phenolic compounds in different Vitis species[J]. Acta Hortic, 2020(1276): 31-40. |
[94] | 柴楠. 索邦百合响应椭圆葡萄孢(Botrytis elliptica)侵染的转录和代谢组学分析及抗病关键基因的筛选[D]. 重庆: 西南大学, 2021. |
Chai N. Trascriptomic and Metabolic profiling of Lilium infected with Botrytis elliptica and screening of key genes for resistant diseases[D]. Chongqing: Southwest University, 2021. | |
[95] |
Rashad Y, Aseel D, Hammad S, et al. Rhizophagus irregularis and Rhizoctonia solani differentially elicit systemic transcriptional expression of polyphenol biosynthetic pathways genes in sunflower[J]. Biomolecules, 2020, 10(3): 379.
doi: 10.3390/biom10030379 URL |
[96] |
Aseel DG, Rashad YM, Hammad SM. Arbuscular mycorrhizal fungi trigger transcriptional expression of flavonoid and chlorogenic acid biosynthetic pathways genes in tomato against tomato mosaic virus[J]. Sci Rep, 2019, 9(1): 9692.
doi: 10.1038/s41598-019-46281-x pmid: 31273308 |
[97] | Caliskan O, Radusiene J, Temizel KE, et al. The effects of salt and drought stress on phenolic accumulation in greenhouse-grown Hypericum pruinatum[J]. Ital J Agronomy, 2017, 12(3): 271-275. |
[98] | Eray N, Dalar A, Turker M. The effects of abiotic stressors and signal molecules on phenolic composition and antioxidant activities of in vitro regenerated Hypericum perforatum(St. John's Wort)[J]. S Afr N J Bot, 2020, 133: 253-263. |
[99] |
Sun CH, Yang CY, Tzen JTC. Molecular identification and characterization of hydroxycinnamoyl transferase in tea plants(Camellia sinensis L.)[J]. Int J Mol Sci, 2018, 19(12): 3938.
doi: 10.3390/ijms19123938 URL |
[100] |
Zha Y, Zhao B, Qiu JR, et al. Integrated transcriptomic and metabolomic analyses of pak choi[Brassica pekinensis(Lour.) Rupr]response to combined stress of acid rain and cadmium-containing atmospheric fine particulate matter[J]. Front Environ Sci, 2022, 10: 1020308.
doi: 10.3389/fenvs.2022.1020308 URL |
[101] |
Kamalizadeh M, Bihamta M, Zarei A. Drought stress and TiO2 nanoparticles affect the composition of different active compounds in the Moldavian dragonhead plant[J]. Acta Physiol Plant, 2019, 41(2): 21.
doi: 10.1007/s11738-019-2814-0 |
[102] |
Kısa D, Elmastaş M, Öztürk L, et al. Responses of the phenolic compounds of Zea mays under heavy metal stress[J]. Appl Biol Chem, 2016, 59(6): 813-820.
doi: 10.1007/s13765-016-0229-9 URL |
[103] | Kisa D, Kayir ÖN, Saglam S, et al. Changes of phenolic compounds in tomato associated with the heavy metal stress[J]. International Journal of Natural and Applied Sciences, 2019, 2(1): 35-43. |
[104] |
Yu Y, Zhang Q, Liu S, et al. Effects of exogenous phytohormones on chlorogenic acid accumulation and pathway-associated gene expressions in sweetpotato stem tips[J]. Plant Physiol Biochem, 2021, 164: 21-26.
doi: 10.1016/j.plaphy.2021.04.014 URL |
[105] |
Tosetti R, Elmi F, Pradas I, et al. Continuous exposure to ethylene differentially affects senescence in receptacle and achene tissues in strawberry fruit[J]. Front Plant Sci, 2020, 11: 174.
doi: 10.3389/fpls.2020.00174 pmid: 32226433 |
[106] |
Li SC, Xiao LH, Chen M, et al. The involvement of the phenylpropanoid and jasmonate pathways in methyl jasmonate-induced soft rot resistance in kiwifruit(Actinidia chinensis)[J]. Front Plant Sci, 2022, 13: 1097733.
doi: 10.3389/fpls.2022.1097733 URL |
[107] | Yadav P, Kaur R, Kohli SK, et al. Castasterone assisted accumulation of polyphenols and antioxidant to increase tolerance of B. juncea plants towards copper toxicity[J]. Cogent Food Agric, 2016, 2(1): 1276821. |
[108] |
Jiao XY, Li YX, Zhang XZ, et al. Exogenous dopamine application promotes alkali tolerance of apple seedlings[J]. Plants, 2019, 8(12): 580.
doi: 10.3390/plants8120580 URL |
[109] |
Michailidis M, Tanou G, Sarrou E, et al. Pre- and post-harvest melatonin application boosted phenolic compounds accumulation and altered respiratory characters in sweet cherry fruit[J]. Front Nutr, 2021, 8: 695061.
doi: 10.3389/fnut.2021.695061 URL |
[110] |
Wang J, Tian PP, Sun JJ, et al. CsMYC2 is involved in the regulation of phenylpropanoid biosynthesis induced by trypsin in cucumber(Cucumis sativus)during storage[J]. Plant Physiol Biochem, 2023, 196: 65-74.
doi: 10.1016/j.plaphy.2023.01.041 URL |
[111] |
Naoya Fukuda ME, Yoshida H, Kusano M. Effects of light quality, photoperiod, CO2 concentration, and air temperature on chlorogenic acid and rutin accumulation in young lettuce plants[J]. Plant Physiol Biochem, 2022, 186: 290-298.
doi: 10.1016/j.plaphy.2022.07.010 URL |
[112] |
Lee M, Xu JW, Wang WQ, et al. The effect of supplemental blue, red and far-red light on the growth and the nutritional quality of red and green leaf lettuce[J]. Am J Plant Sci, 2019, 10(12): 2219-2235.
doi: 10.4236/ajps.2019.1012157 URL |
[113] |
Shimomura M, Yoshida H, Fujiuchi N, et al. Continuous blue lighting and elevated carbon dioxide concentration rapidly increase chlorogenic acid content in young lettuce plants[J]. Sci Hortic, 2020, 272: 109550.
doi: 10.1016/j.scienta.2020.109550 URL |
[1] | WANG Jun-fang, HUANG Qiu-bin, ZHANG Piao-dan, ZHANG Peng-pai. Structure and Biosynthesis of Surfactin as well as Its Role in Biological Control [J]. Biotechnology Bulletin, 2024, 40(1): 100-112. |
[2] | LIN Xin-yan, ZHANG Chuan-zhong, DAI Bing, WANG Xin-heng, LIU Jian-feng, WEN Li, XU Xing-jian, FANG Jun. Advances in Genetic and Molecular Mechanisms of Pre-harvest Sprouting in Rice [J]. Biotechnology Bulletin, 2024, 40(1): 24-31. |
[3] | WANG Bin, YUAN Xiao, JIANG Yuan-yuan, WANG Yu-kun, XIAO Yan-hui, HE Jin-ming. Cloning of bHLH96 Gene and Its Roles in Regulating the Biosynthesis of Peppermint Terpenes [J]. Biotechnology Bulletin, 2024, 40(1): 281-293. |
[4] | LI Liang, XU Shan-shan, JIANG Yan-jun. Research Progress in the Production of Ergothioneine by Biosynthesis [J]. Biotechnology Bulletin, 2024, 40(1): 86-99. |
[5] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[6] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[7] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[8] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[9] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[10] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[11] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[12] | WANG Ling, ZHUO Shen, FU Xue-sen, LIU Zi-xuan, LIU Xiao-rong, WANG Zhi-hui, ZHOU Ri-bao, LIU Xiang-dan. Advances in the Biosynthetic Pathways and Related Genes of Lotus Alkaloids [J]. Biotechnology Bulletin, 2023, 39(7): 56-66. |
[13] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[14] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[15] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||