Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (3): 296-304.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0902
Previous Articles Next Articles
WANG Meng-ya(), LIU Jia-qi, JIANG Hai-lin, LI Jing-hua, ZHAO Chun-yan, HUANG Hong-lan()
Received:
2023-09-19
Online:
2024-03-26
Published:
2024-04-08
Contact:
HUANG Hong-lan
E-mail:2462860228@qq.com;hhl@jlu.edu.cn
WANG Meng-ya, LIU Jia-qi, JIANG Hai-lin, LI Jing-hua, ZHAO Chun-yan, HUANG Hong-lan. Biological Characteristics and Application of Enteroinvasive Escherichia coli Phage DK-13[J]. Biotechnology Bulletin, 2024, 40(3): 296-304.
Fig. 2 Biological characters of phage DK-13 A: MOI of phage DK-13. B: Step growth curve of phage DK-13. Different lower letters indicate significant difference among each group (P<0.05). The same below
菌株名称 Strain name | 菌株类型 Strain type | 噬菌体DK-13的裂解性 Phage DK-13 lytic ability |
---|---|---|
大肠埃希菌A1 Escherichia coli A1 | O157:H7 | - |
大肠埃希菌A2 E. coli A2 | EPEC | - |
大肠埃希菌A3 E. coli A3 | O26:H11 | - |
大肠埃希菌A4 E. coli A4 | O26:H11 | - |
大肠埃希菌A5 E. coli A5 | O26:H11 | - |
大肠埃希菌A6 E. coli A6 | O26:H11 | - |
大肠埃希菌A7 E. coli A7 | O26:H11 | - |
大肠埃希菌A8 E. coli A8 | O46:H38 | - |
大肠埃希菌A9 E. coli A9 | O11:NM | - |
大肠埃希菌A10 E. coli A10 | O157:H7 | - |
大肠埃希菌A11 E. coli A11 | O157:H7 | - |
大肠埃希菌A12 E. coli A12 | O157:H7 | - |
大肠埃希菌A13 E. coli A13 | O157:H7 | - |
大肠埃希菌A14 E. coli A14 | O157:H7 | - |
大肠埃希菌A15 E. coli A15 | O157:H7 | - |
蜡样芽孢杆菌L1 Bacillus cereus L1 | * | - |
蜡样芽孢杆菌L2 B. cereus L2 | * | - |
金黄色葡萄球菌B1 Streptococcus aureus B1 | * | - |
金黄色葡萄球菌B2 S. aureus B2 | * | - |
金黄色葡萄球菌B3 S. aureus B3 | * | - |
大肠埃希菌(宿主菌)D1 E. coli D1 | EIEC | + |
Table 1 Host range of DK-13 phage
菌株名称 Strain name | 菌株类型 Strain type | 噬菌体DK-13的裂解性 Phage DK-13 lytic ability |
---|---|---|
大肠埃希菌A1 Escherichia coli A1 | O157:H7 | - |
大肠埃希菌A2 E. coli A2 | EPEC | - |
大肠埃希菌A3 E. coli A3 | O26:H11 | - |
大肠埃希菌A4 E. coli A4 | O26:H11 | - |
大肠埃希菌A5 E. coli A5 | O26:H11 | - |
大肠埃希菌A6 E. coli A6 | O26:H11 | - |
大肠埃希菌A7 E. coli A7 | O26:H11 | - |
大肠埃希菌A8 E. coli A8 | O46:H38 | - |
大肠埃希菌A9 E. coli A9 | O11:NM | - |
大肠埃希菌A10 E. coli A10 | O157:H7 | - |
大肠埃希菌A11 E. coli A11 | O157:H7 | - |
大肠埃希菌A12 E. coli A12 | O157:H7 | - |
大肠埃希菌A13 E. coli A13 | O157:H7 | - |
大肠埃希菌A14 E. coli A14 | O157:H7 | - |
大肠埃希菌A15 E. coli A15 | O157:H7 | - |
蜡样芽孢杆菌L1 Bacillus cereus L1 | * | - |
蜡样芽孢杆菌L2 B. cereus L2 | * | - |
金黄色葡萄球菌B1 Streptococcus aureus B1 | * | - |
金黄色葡萄球菌B2 S. aureus B2 | * | - |
金黄色葡萄球菌B3 S. aureus B3 | * | - |
大肠埃希菌(宿主菌)D1 E. coli D1 | EIEC | + |
Fig. 4 Annotation diagram of the genome of DK-13 phage The direction of arrow indicates the direction of gene. Red: The structural gene module. Brown: The packaged genetic module. Blue: The nucleotide metabolism gene module. Orange: Duplication/ Recombination gene module. Pink: Transcription/ Translation gene module. Green: Other function module. Grey: Hypothetical protein. Black: GC content
Fig. 6 Sterilization effect of phage DK-13 at different temperatures on contaminated pork A: Sterilization effect of phage DK-13 at 4℃. B: Sterilization effect of phage DK-13 at 37℃
[1] |
陈亚强, 彭津津, 廖明, 等. 土鸡屠宰过程中大肠杆菌毒力基因检测及耐药性分析[J]. 中国畜牧兽医, 2020, 47(8): 2615-2624.
doi: 10.16431/j.cnki.1671-7236.2020.08.031 |
CHEN Y Q, PENG J J, L LIAO M, et al. Virulence genes detection and antibiotic resistance analysis of Escherichia coli isolated from slaughtering process of free-range chicken[J]. China Animal Husbandry & Veterinary Medicine, 2020 47(8):2615-2624. | |
[2] |
Fricke W F, McDermott P F, Mammel M K, et al. Antimicrobial resistance-conferring plasmids with similarity to virulence plasmids from avian pathogenic Escherichia coli strains in Salmonella enterica serovar kentucky isolates from poultry[J]. Applied and Environmental Microbiology, 2009, 75(18): 5963-5971.
doi: 10.1128/AEM.00786-09 URL |
[3] | Van Den Beld M J C, Reubsaet F A. G. Differentiation between Shigella, enteroinvasive Escherichia coli(EIEC)and noninvasive Escherichia coli[J]. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 2012, 31(6): 899-904. |
[4] |
Zhang K, Ge H, He J, et al. Salmonella typhimurium st34 isolate was more resistant than the st19 isolate in china, 2007-2019[J]. Foodborne Pathogens and Disease, 2022, 19(1): 62-69.
doi: 10.1089/fpd.2021.0047 URL |
[5] |
Ge H, Fu S, Guo H, et al. Application and challenge of bacteriophage in the food protection[J]. International Journal of Food Microbiology, 2022, 380: 109872.
doi: 10.1016/j.ijfoodmicro.2022.109872 URL |
[6] |
Rehman S, Ali Z, Khan M, et al. The dawn of phage therapy[J]. Reviews in Medical Virology, 2019, 29(4): e2041.
doi: 10.1002/rmv.2041 |
[7] |
Harada L K, Silva E C, Campos W F, et al. Biotechnological applications of bacteriophages: state of the art[J]. Microbiological Research, 2018, 212-213: 38-58.
doi: S0944-5013(18)30133-2 pmid: 29853167 |
[8] |
Henry M, Debarbieux L. Tools from viruses: bacteriophage successes and beyond[J]. Virology, 2012, 434(2): 151-161.
doi: 10.1016/j.virol.2012.09.017 pmid: 23063405 |
[9] |
Moye Z D, Woolston J, Sulakvelidze A. Bacteriophage applications for food production and processing: 4[J]. Viruses, 2018, 10(4): 205.
doi: 10.3390/v10040205 URL |
[10] |
Kahn L H, Bergeron G, Bourassa M W, et al. From farm management to bacteriophage therapy: strategies to reduce antibiotic use in animal agriculture[J]. Annals of the New York Academy of Sciences, 2019, 1441(1): 31-39.
doi: 10.1111/nyas.14034 pmid: 30924542 |
[11] |
Magnone J P, Marek P J, Sulakvelidze A, et al. Additive approach for inactivation of escherichia coli o157:h7, salmonella, and shigella spp. on contaminated fresh fruits and vegetables using bacteriophage cocktail and produce wash[J]. Journal of Food Protection, 2013, 76(8): 1336-1341.
doi: 10.4315/0362-028X.JFP-12-517 pmid: 23905788 |
[12] |
Vikram A, Tokman J I, Woolston J, et al. Phage biocontrol improves food safety by significantly reducing the level and prevalence of escherichia coli o157:h7 in various foods[J]. Journal of Food Protection, 2020, 83(4): 668-676.
doi: 10.4315/0362-028X.JFP-19-433 pmid: 32221572 |
[13] |
Rahimzadeh G, Saeedi M, Moosazadeh M, et al. Encapsulation of bacteriophage cocktail into chitosan for the treatment of bacterial diarrhea: 1[J]. Scientific Reports, 2021, 11(1): 15603.
doi: 10.1038/s41598-021-95132-1 pmid: 34341399 |
[14] | 李兆雪, 兰冠达, 范聪聪, 等. 肠出血性大肠埃希菌O157: H7噬菌体FEC14和FEC19特性及污染牛肉杀菌潜在应用探究[J]. 微生物学通报, 2022, 49(7): 2741-2752. |
Li ZX, Lan GD, Fan CC, et al. Characterization of enterohaemorrhagic Escherichia coli O157: H7 phages FEC14 and FEC19 and their potential use in contaminated beef[J]. Microbiol China, 2022, 49(7): 2741-2752. | |
[15] | 李载平. 《分子克隆实验指南》(第3版)[J]. 科学通报, 2002, 47(24): 1888. |
Li ZP. Experimental guide to molecular cloning(3rd edition)[J]. Chin Sci Bull, 2002, 47(24): 1888.
doi: 10.1360/csb2002-47-24-1888 URL |
|
[16] |
Li S, Konoval HM, Marecek S, et al. Salmonella spp. response to lytic bacteriophage and lactic acid on marinated and tenderized raw pork loins[J]. Foods, 2022, 11(6): 879.
doi: 10.3390/foods11060879 URL |
[17] |
Abidin AU, Asmara AA, Asmarany A, et al. A linkage of personal, food, and environmental hygiene to presence of E. coli in Warmindo Food Stall[J]. Gac Sanit, 2021, 35(Suppl 2): S107-S111.
doi: 10.1016/j.gaceta.2021.10.008 URL |
[18] | 冯杰. 猪、肉制品及人源耐碳青霉烯类肠杆菌科(CRE)细菌的耐药性和传播特性分析[D]. 杨凌: 西北农林科技大学, 2022. |
Feng J. Antibiotic resistance and transmission characteristics of carbapenem-resistant Enterobacteriaceae(CRE)strains from pig, retail meat products and human[D]. Yangling: Northwest A&F University, 2022. | |
[19] |
Sarhan WA, Azzazy HME. Phage approved in food, why not as a therapeutic?[J]. Expert Rev Anti Infect Ther, 2015, 13(1): 91-101.
doi: 10.1586/14787210.2015.990383 pmid: 25488141 |
[20] |
Hatfull GF. Bacteriophage genomics[J]. Curr Opin Microbiol, 2008, 11(5): 447-453.
doi: 10.1016/j.mib.2008.09.004 pmid: 18824125 |
[21] | Sulakvelidze A, Barrow P. Phage therapy in animals and agribusiness[M]// Bacteriophages. CRC Press, 2004 |
[22] |
Bajovic B, Bolumar T, Heinz V. Quality considerations with high pressure processing of fresh and value added meat products[J]. Meat Sci, 2012, 92(3): 280-289.
doi: 10.1016/j.meatsci.2012.04.024 pmid: 22608831 |
[23] |
Schmelcher M, Loessner MJ. Bacteriophage endolysins: applications for food safety[J]. Curr Opin Biotechnol, 2016, 37: 76-87.
doi: 10.1016/j.copbio.2015.10.005 URL |
[24] |
Han SH, Byun KH, Mizan MFR, et al. Bacteriophage and their lysins: a new era of biocontrol for inactivation of pathogenic bacteria in poultry processing and production—a review[J]. Food Contr, 2022, 137: 108976.
doi: 10.1016/j.foodcont.2022.108976 URL |
[25] |
Gutiérrez D, Rodríguez-Rubio L, Martínez B, et al. Bacteriophages as weapons against bacterial biofilms in the food industry[J]. Front Microbiol, 2016, 7: 825.
doi: 10.3389/fmicb.2016.00825 pmid: 27375566 |
[26] |
Perera MN, Abuladze T, Li MR, et al. Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods[J]. Food Microbiol, 2015, 52: 42-48.
doi: 10.1016/j.fm.2015.06.006 pmid: 26338115 |
[27] |
Yuan XM, Zhang SH, Wang J, et al. Isolation and characterization of a novel Escherichia coli Kayfunavirus phage DY1[J]. Virus Res, 2021, 293: 198274.
doi: 10.1016/j.virusres.2020.198274 URL |
[28] |
Nicolas M, Trotereau A, Culot A, et al. Isolation and characterization of a novel phage collection against avian-pathogenic Escherichia coli[J]. Microbiol Spectr, 2023, 11(3): e0429622.
doi: 10.1128/spectrum.04296-22 URL |
[29] |
Kutateladze M, Adamia R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics[J]. Trends Biotechnol, 2010, 28(12): 591-595.
doi: 10.1016/j.tibtech.2010.08.001 pmid: 20810181 |
[30] |
Kaliniene L, Klausa V, Truncaite L. Low-temperature T4-like coliphages vB_EcoM-VR5, vB_EcoM-VR7 and vB_EcoM-VR20[J]. Arch Virol, 2010, 155(6): 871-880.
doi: 10.1007/s00705-010-0656-6 pmid: 20361343 |
[31] |
Hong Y, Pan Y, Ebner PD. Meat Science and Muscle Biology Symposium: development of bacteriophage treatments to reduce Escherichia coli O157: H7 contamination of beef products and produce[J]. J Anim Sci, 2014, 92(4): 1366-1377.
doi: 10.2527/jas.2013-7272 pmid: 24492574 |
[32] |
Figueiredo ACL, Almeida RCC. Antibacterial efficacy of nisin, bacteriophage P100 and sodium lactate against Listeria monocytogenes in ready-to-eat sliced pork ham[J]. Braz J Microbiol, 2017, 48(4): 724-729.
doi: S1517-8382(16)30056-9 pmid: 28641956 |
[33] |
Soffer N, Woolston J, Li M, et al. Bacteriophage preparation lytic for shigella significantly reduces shigella sonnei contamination in various foods[J]. PLoS One, 2017, 12(3): e0175256.
doi: 10.1371/journal.pone.0175256 URL |
[34] | 孙新城, 赵成鑫, 胡旭阳, 等. 噬菌体在食品安全领域中的应用[J]. 中国病原生物学杂志, 2022, 17(4): 479-482. |
Sun XC, Zhao CX, Hu XY, et al. Application of bacteriophage in food safety[J]. J Pathog Biol, 2022, 17(4): 479-482. |
[1] | LI Tuo, LI Long-ping, QU Lei. Research Progress in the Structure of Tailed Bacteriophage and Its Receptors [J]. Biotechnology Bulletin, 2023, 39(6): 88-101. |
[2] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[3] | HU Xue-ying, ZHANG Yue, GUO Ya-jie, QIU Tian-lei, GAO Min, SUN Xing-bin, WANG Xu-ming. Comparison in Antibiotic Resistance Genes Carried by Bacteriophages and Bacteria in Farmland Soil Amended with Different Fertilizers [J]. Biotechnology Bulletin, 2022, 38(9): 116-126. |
[4] | WEN Chang, LIU Chen, LU Shi-yun, XU Zhong-bing, AI Chao-fan, LIAO Han-peng, ZHOU Shun-gui. Biological Characteristics and Genome Analysis of a Novel Multidrug-resistant Shigella flexneri Phage [J]. Biotechnology Bulletin, 2022, 38(9): 127-135. |
[5] | XU Chong-xin, ZHANG Xiao, LIU Yuan, ZHONG Jian-feng, XIE Ya-jing, LU Li-na, GAO Mei-jing, LIU Xian-jin. Screening and Identification of Humanized Genetically Engineered Antibody Targeting to Simulate the Anti-insect Function of Bt Cry1C Protein [J]. Biotechnology Bulletin, 2022, 38(5): 191-200. |
[6] | WANG Jia-li, HE Si-qi, KANG Zi-xi, WANG Jian-xun. Antibody Phage Display Technology and Its Application in the Discovery of Anti-SARS-CoV-2 Antibodies [J]. Biotechnology Bulletin, 2022, 38(5): 248-256. |
[7] | ZHANG Ya-han, ZHU Li-xia, HU Jing, ZHU Ya-jing, ZHANG Xue-jing, CAO Ye-zhong. Opportunities and Challenges of Glyphosate in the Application of Biotechnology Breeding in China [J]. Biotechnology Bulletin, 2022, 38(11): 1-9. |
[8] | ZHANG Jun-feng, LI Meng-ke, WU Zhi-hao, CUI Xiao-long, XIAO wei, ZHANG Shi-ying. Effects of Bacteriophages DCEAV-31 and DCEIV-9 on the Algicidal Characteristics of Algicidal Bacterium Against Microcystis [J]. Biotechnology Bulletin, 2022, 38(11): 250-257. |
[9] | HUANG Jing-xiao, SHANG Jun-kang, CHEN Hui-min, SHEN Jia-min, LI Yuan-yuan, YU Yu-li, NI Jin-dong, LIN Bo-kun. Biological Characterization and Genome Analysis of a Lytic Phage Infecting Salmonella [J]. Biotechnology Bulletin, 2021, 37(6): 136-146. |
[10] | WANG Xiao-fang, HOU Yu-gang, YANG Ke-ming, WANG Jia-ning, WEI Zhong, XU Yang-chun, SHEN Qi-rong. Isolation of Specific Phage of Ralstonia solanacearum and Its Effects on Control of Soil-borne Bacterial Wilt Disease [J]. Biotechnology Bulletin, 2020, 36(9): 194-201. |
[11] | WANG Qi, YAN Chun-lei, GAO Hong-wei, WU Wei, YANG Qing-li. Research Progress of DNA Aptasensors for Foodborne Pathogen Detection [J]. Biotechnology Bulletin, 2020, 36(11): 245-258. |
[12] | SUN Wen-yang, LIN Jian-chun, GUN Shuang-bao, WANG Jin-yong. Progress of Immunocyte in the Thermogenesis of Brown Adipose Tissue and Browning of White Adipose Tissue [J]. Biotechnology Bulletin, 2020, 36(1): 175-181. |
[13] | WU Ya, XU Zhi-hui, ZHANG Biao, ZHAO Dong-fang, CAO Wen-xin, ZHANG Xing-ping. Research Progress of Nucleic Acid Aptamer Optical Biosensor in Kanamycin Detection [J]. Biotechnology Bulletin, 2020, 36(1): 193-201. |
[14] | SHI Bao-zhong, HU Jian-ran, LI Ping, XU Kai. Immunoregulatory Effect of Polysaccharides from Codonopsis pilosula on the Ana-1 Macrophages in Mice [J]. Biotechnology Bulletin, 2019, 35(6): 114-118. |
[15] | QI Jia-ming, YANG Na, SUN Shan-shan, MING Yan-chao, GUO Liang, ZHANG Dong-xu, XU zhi-wen. Identification of a Bacillus Strain BS-2 with Anti-phages and Optimization of Glucose Feeding Strategy [J]. Biotechnology Bulletin, 2019, 35(3): 210-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||