Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (7): 307-313.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0136
Previous Articles Next Articles
CAI Yi-an1(), ZHANG Yi-qun1, YANG Zi-xuan1, LIU Ye-xue1, LIU Wen-long2, LU Fu-ping1(), LI Yu1()
Received:
2024-02-03
Online:
2024-07-26
Published:
2024-07-30
Contact:
LU Fu-ping, LI Yu
E-mail:ianchoi97@126.com;lfp@tust.edu.cn;liyu@tust.edu.cn
CAI Yi-an, ZHANG Yi-qun, YANG Zi-xuan, LIU Ye-xue, LIU Wen-long, LU Fu-ping, LI Yu. Enhanced Expression of Protease K in Pichia pastoris through Molecular Chaperones and Analysis of Its Effect on Wool Scale Layer[J]. Biotechnology Bulletin, 2024, 40(7): 307-313.
Fig. 5 Electron microscopy of wool scales hydrolyzed by different proteases A: Untreated wool sample; B: TPRK treatment; C: alkaline protease treatment; D: keratinase treatment
Fig. 6 Electron microscopy of TPRK hydrolyzed wool scales A: 100 U/mL TPRK hydrolyzed wool for 0.5 h, 1 h, 1.5 h, and 2 h; B: 300 U/mL TPRK hydrolyzed wool for 0.5 h, 1 h, 1.5 h, and 2 h; C: 500 U/mL TPRK hydrolyzed wool for 0.5 h, 1 h, 1.5 h, and 2 h
[1] |
Rani S, Kadam V, Rose NM, et al. Wheat starch, gum arabic and chitosan biopolymer treatment of wool fabric for improved shrink resistance finishing[J]. Int J Biol Macromol, 2020, 163: 1044-1052.
doi: S0141-8130(20)33811-3 pmid: 32673714 |
[2] | 张腾飞. 基于蛋白酶K的羊毛剥鳞技术研究[D]. 上海: 东华大学, 2023. |
Zhang TF. Reaserch on wool scale-peeling technology based on proteinase K[D]. Shanghai: Donghua University, 2023. | |
[3] | Li B, Li JY, Shen YQ, et al. Development of environmentally friendly wool shrink-proof finishing technology based on L-cysteine/protease treatment solution system[J]. Int J Mol Sci, 2022, 23(21): 13553. |
[4] |
Bhari R, Kaur M, Sarup Singh R. Chicken feather waste hydrolysate as a superior biofertilizer in agroindustry[J]. Curr Microbiol, 2021, 78(6): 2212-2230.
doi: 10.1007/s00284-021-02491-z pmid: 33903939 |
[5] |
An FF, Fang KJ, Liu XM, et al. Protease and sodium alginate combined treatment of wool fabric for enhancing inkjet printing performance of reactive dyes[J]. Int J Biol Macromol, 2020, 146: 959-964.
doi: S0141-8130(19)34207-2 pmid: 31726143 |
[6] | Wang L, Yao JB, Niu JR, et al. Eco-friendly and highly efficient enzyme-based wool shrinkproofing finishing by multiple padding techniques[J]. Polymers, 2018, 10(11): 1213. |
[7] | Ren YX, Luo HY, Huang HQ, et al. Improving the catalytic performance of proteinase K from Parengyodontium album for use in feather degradation[J]. Int J Biol Macromol, 2020, 154: 1586-1595. |
[8] | Li R, Liu Z, Jiang F, et al. Enhancement of thermal stability of proteinase K by biocompatible cholinium-based ionic liquids[J]. Phys Chem Chem Phys, 2022, 24(21): 13057-13065. |
[9] | Yadollahi E, Shareghi B, Eslami farsani R. Molecular aspects of the interaction of organic solvents and proteinase K: kinetics and docking studies[J]. Iran J Sci Technol Trans A Sci, 2019, 43(1): 57-62. |
[10] | Skowron PM, Krefft D, Brodzik R, et al. An alternative for proteinase K-heat-sensitive protease from fungus Onygena corvina for biotechnology: cloning, engineering, expression, characterization and special application for protein sequencing[J]. Microb Cell Fact, 2020, 19(1): 135. |
[11] | Yang JX, Chu N, Chen XW. Preparation of polyoxometalate-based composite by solidification of highly active cobalt-containing polytungstate on polymeric ionic liquid for the efficient isolation of proteinase K[J]. Molecules, 2023, 28(8): 3307. |
[12] | Yang H, Zhai C, Yu XH, et al. High-level expression of proteinase K from Tritirachium album Limber in Pichia pastoris using multi-copy expression strains[J]. Protein Expr Purif, 2016, 122: 38-44. |
[13] | Cai P, Duan XP, Wu XY, et al. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris[J]. Nucleic Acids Res, 2021, 49(13): 7791-7805. |
[14] | 李登科, 王欣驰, 陈雪佳, 等. 不同β-葡萄糖苷酶性能分析及对罗汉果苷的转化[J]. 食品科学技术学报, 2019, 37(3): 48-54. |
Li DK, Wang XC, Chen XJ, et al. Properties analysis and transformation ability to mogroside of β-glucosidase[J]. J Food Sci Technol, 2019, 37(3): 48-54. | |
[15] |
Raschmanová H, Weninger A, Knejzlík Z, et al. Engineering of the unfolded protein response pathway in Pichia pastoris: enhancing production of secreted recombinant proteins[J]. Appl Microbiol Biotechnol, 2021, 105(11): 4397-4414.
doi: 10.1007/s00253-021-11336-5 pmid: 34037840 |
[16] | Fauzee YNBM, Taniguchi N, Ishiwata-Kimata Y, et al. The unfolded protein response in Pichia pastoris without external stressing stimuli[J]. FEMS Yeast Res, 2020, 20(7): foaa053. |
[17] |
Herrera-Estala AL, Fuentes-Garibay JA, Guerrero-Olazarán M, et al. Low specific growth rate and temperature in fed-batch cultures of a beta-propeller phytase producing Pichia pastoris strain under GAP promoter trigger increased KAR2 and PSA1-1 gene expression yielding enhanced extracellular productivity[J]. J Biotechnol, 2022, 352: 59-67.
doi: 10.1016/j.jbiotec.2022.05.010 pmid: 35618082 |
[18] |
Tyson JR, Stirling CJ. LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum[J]. EMBO J, 2000, 19(23): 6440-6452.
doi: 10.1093/emboj/19.23.6440 pmid: 11101517 |
[19] | Wang YX, Luo X, Zhao YQ, et al. Integrated strategies for enhancing the expression of the AqCoA chitosanase in Pichia pastoris by combined optimization of molecular chaperones combinations and copy numbers via a novel plasmid pMC-GAP[J]. Appl Biochem Biotechnol, 2021, 193(12): 4035-4051. |
[20] | Li Y, Hu XY, Sang JC, et al. An acid-stable β-glucosidase from Aspergillus aculeatus: gene expression, biochemical characterization and molecular dynamics simulation[J]. Int J Biol Macromol, 2018, 119: 462-469. |
[21] | 罗漫杰, 徐灿, 王梁, 等. 一种蛋白酶K高表达工程菌株的构建及应用: CN113481225A>[P]. 2021-10-08. |
Luo MJ, Xu C, Wang L, et al. Construction and application of an engineering strain with high expression of protease K: CN113481225A[P]. 2021-10-08. | |
[22] | 杨琥, 陈莹, 谭华菊. 一种蛋白酶K多拷贝菌种构建方法: CN112359035A[P]. 2021-02-12. |
Yang H, Chen Y, Tan HJ. A method for constructing multi copy strains of proteinase K: CN112359035A[P]. 2021-02-12. | |
[23] | 王华明, 林艳梅. 一种高产蛋白酶K的黑曲霉菌株及其应用: CN104480027A[P]. 2015-04-01. |
Wang HM, Lin YM. A high-yield proteinase K strain of Aspergillus niger and its application: CN104480027B[P]. 2016-09-21. | |
[24] |
Li WH, Singer RH. Detecting the non-conventional mRNA splicing and translational activation of HAC1 in budding yeast[J]. Methods Mol Biol, 2022, 2378: 113-120.
doi: 10.1007/978-1-0716-1732-8_8 pmid: 34985697 |
[25] |
Zahrl RJ, Prielhofer R, Ata Ö, et al. Pushing and pulling proteins into the yeast secretory pathway enhances recombinant protein secretion[J]. Metab Eng, 2022, 74: 36-48.
doi: 10.1016/j.ymben.2022.08.010 pmid: 36057427 |
[26] | Li C, Lin Y, Zheng XY, et al. Combined strategies for improving expression of Citrobacter amalonaticus phytase in Pichia pastoris[J]. BMC Biotechnol, 2015, 15: 88. |
[27] | Killian AN, Miller SC, Hines JK. Impact of amyloid polymorphism on prion-chaperone interactions in yeast[J]. Viruses, 2019, 11(4): 349. |
[28] |
Fürsch J, Voormann C, Kammer KM, et al. Structural probing of Hsp26 activation and client binding by quantitative cross-linking mass spectrometry[J]. Anal Chem, 2021, 93(39): 13226-13234.
doi: 10.1021/acs.analchem.1c02282 pmid: 34542282 |
[29] | Deng JB, Li JQ, Ma MP, et al. Co-expressing GroEL-GroES, Ssa1-Sis1 and Bip-PDI chaperones for enhanced intracellular production and partial-wall breaking improved stability of porcine growth hormone[J]. Microb Cell Fact, 2020, 19(1): 35. |
[30] |
de Jesus JR, Aragão AZB, Arruda MAZ, et al. Optimization of a methodology for quantification and removal of zinc gives insights into the effect of this metal on the stability and function of the zinc-binding co-chaperone Ydj1[J]. Front Chem, 2019, 7: 416.
doi: 10.3389/fchem.2019.00416 pmid: 31263692 |
[31] |
Gaur D, Singh P, Guleria J, et al. The yeast Hsp70 cochaperone Ydj1 regulates functional distinction of Ssa Hsp70s in the Hsp90 chaperoning pathway[J]. Genetics, 2020, 215(3): 683-698.
doi: 10.1534/genetics.120.303190 pmid: 32299842 |
[32] | Gaur D, Kumar N, Ghosh A, et al. Ydj1 interaction at nucleotide-binding-domain of yeast Ssa1 impacts Hsp90 collaboration and client maturation[J]. PLoS Genet, 2022, 18(11): e1010442. |
[33] | Li WJ, Zhang N, Wang Q, et al. A sustainable and effective bioprocessing approach for improving anti-felting, anti-pilling and dyeing properties of wool fabric[J]. Fibres Polym, 2021, 22(11): 3045-3054. |
[1] | RUZHA Yelizhati, YANG Yu. Strategies for Increasing Heterologous Protein Expression in Pichia pastoris [J]. Biotechnology Bulletin, 2024, 40(3): 118-134. |
[2] | ZHAO Si-jia, WANG Xiao-lu, SUN Ji-lu, TIAN Jian, ZHANG Jie. Modification of Pichia pastoris for Erythritol Production by Metabolic Engineering [J]. Biotechnology Bulletin, 2023, 39(8): 137-147. |
[3] | MEI Huan, LI Yue, LIU Ke-meng, LIU Ji-hua. Study on the Biosynthesis of l-SLR by Efficient Prokaryotic Expression of Berberine Bridge Enzyme [J]. Biotechnology Bulletin, 2023, 39(7): 277-287. |
[4] | DONG Cong, GAO Qing-hua, WANG Yue, LUO Tong-yang, WANG Qing-qing. Increasing the Expression of FAD-dependent Glucose Dehydrogenase by Recombinant Pichia pastoris Using a Combined Strategy [J]. Biotechnology Bulletin, 2023, 39(6): 316-324. |
[5] | WANG Yue, GAO Qing-hua, DONG Cong, LUO Tong-yang, WANG Qing-qing. Expression of Pyranose Oxidase with Optimized Codon in Pichia pastoris [J]. Biotechnology Bulletin, 2022, 38(4): 269-277. |
[6] | ZHAO Bao-ding, LV Jia, SHEN Yu-yu, GUI Ling, CHEN Zhong-xiu, CHEN Jie, LU Fu-ping, LI Ming. Efficient Transformation of Uridine by Escherichia coli Based on Signal Peptide and Molecular Chaperone Strategy [J]. Biotechnology Bulletin, 2022, 38(11): 238-249. |
[7] | DUAN Xu-guo, ZHANG Yu-hua, HUANG Ting-ting, DING Qian, LUAN Shu-yue, ZHU Qiu-yu. Synergetic Enhancing the Soluble Expression of Thermotoga maritima α-Glucan Phosphorylase by Chemical Chaperones and Induction Condition Optimization [J]. Biotechnology Bulletin, 2021, 37(8): 233-242. |
[8] | YANG Yue, TAO Yan, XIE Jing, QIAN Yun-fang. Biosynthesis of Ctenopharyngodon idella C-type Lysozyme Based on Recombinant Pichia pastoris and Its Antibacterial Activity [J]. Biotechnology Bulletin, 2021, 37(12): 169-179. |
[9] | MIN Qi, GAO Zi-han, YAO Yin, ZHANG Hua-shan, XIONG Hai-rong, ZHANG Li. Effect of Co-expression of HAC1 and Molecular Chaperone Genes on the Expression of Mannanase in Pichia pastoris [J]. Biotechnology Bulletin, 2020, 36(5): 159-168. |
[10] | YANG He-bao ,HU Mei-rong ,ZHENG Xiang ,MOU Qing-xuan ,GAO Pei-ru. Effects of Different Signal Peptides and Their Molecular Chaperones on the Secretion of Neutral Protease in Bacillus subtilis [J]. Biotechnology Bulletin, 2018, 34(6): 134-140. |
[11] | ZHANG Heng, LIU Ying-ying, CHEN Yun, PING Shu-zhen, WANG Jin. Biological Identification of Dgl5 in Deinococcus gobiensis I-0 [J]. Biotechnology Bulletin, 2018, 34(3): 177-184. |
[12] | CAI Dong-mei, GONG Guo-li. The Current Status and Future Perspectives of Production of Biopharmaceuticals in Escherichia coli [J]. Biotechnology Bulletin, 2016, 32(8): 34-40. |
[13] | Zhang Ke, Weng Qunfang, Fu Haohao. Research Progress on Heat Shock Protein 90 of Insects [J]. Biotechnology Bulletin, 2014, 30(2): 15-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||