Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (11): 285-295.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0286
Previous Articles Next Articles
WU Yong-na1(), TENG Wen-long1, ZHANG Lei2, WANG De-fu1, NIU Yan-bing1()
Received:
2024-03-22
Online:
2024-11-26
Published:
2024-12-19
Contact:
NIU Yan-bing
E-mail:gpwzq0130@126.com;niuyanbingbest@163.com
WU Yong-na, TENG Wen-long, ZHANG Lei, WANG De-fu, NIU Yan-bing. Effect of Forsythia suspensa Leaf Tea on with Cirrhosis and Its Mechanism in Rats[J]. Biotechnology Bulletin, 2024, 40(11): 285-295.
Fig. 1 Masson staining of liver between cirrhosis and normal rats A: The rats in the control group had normal liver lobules, no inflammatory infiltration of the central vein, and no connective tissue in the manifold area. B: Rats in the model group had obvious fibrous tissue hyperplasia and pseudolobule formation
Fig. 2 Morphological characteristics of livers in cirrhotic rats Control: Control group. Model: Cirrhosis model group. Tea: Forsythia tea group. Low, Medium and High: 0.5, 0.7 and 1 g/mL crude extract of Forsythia leaf tea, respectively. The same below
Fig. 4 β diversity characteristics among different treatments A: Cluster analysis of β diversity via PLSDA mode. B: Characteristic analysis via the Venn diagram
Fig. 9 Analysis of differential functional pathways in different treatments A: Metabolic pathways of unsaturated fatty acids. B: Pathways of arabinosaccharide transport system substrate-binding protein. C: Respiratory pathway of fumaric acid. D: β-xylosidase GH43. Different letters indicate significant differences at the P<0.05 level. The same below
Fig. 10 Analysis of inflammatory factor in serum in different treatments 1L-4: Interleukin 4. DAO: Diamine oxidase. LPS: Lipopolysaccharide. TLR4: A member of the toll-like receptor(TLR)family
Fig. 12 Correlation analysis between intestinal microbes and clinical factors among different treatments A: Spearman correlation analysis between differential microbiota and differential inflammatory factors. B: CCA analysis of differential microbiota and differential inflammatory cytokines
[1] | Blumberg R, Powrie F. Microbiota, disease, and back to health: a metastable journey[J]. Sci Transl Med, 2012, 4(137): 137rv7. |
[2] | Smith MI, Yatsunenko T, Manary MJ, et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor[J]. Science, 2013, 339(6119): 548-554. |
[3] | Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism[J]. Nature, 2016, 535(7610): 56-64. |
[4] | Węgielska I, Suliburska J. The role of intestinal microbiota in the pathogenesis of metabolic diseases[J]. Acta Sci Pol Technol Aliment, 2016, 15(2): 201-211. |
[5] | Tilg H. A gut feeling about thrombosis[J]. N Engl J Med, 2016, 374(25): 2494-2496. |
[6] | 郭慧玲, 邵玉宇, 孟和毕力格, 等. 肠道菌群与疾病关系的研究进展[J]. 微生物学通报, 2015, 42(2): 400-410. |
Guo HL, Shao YY, Menghe B, et al. Research on the relation between gastrointestinal microbiota and disease[J]. Microbiol China, 2015, 42(2): 400-410. | |
[7] | Claesson MJ, Cusack S, O'Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly[J]. Proc Natl Acad Sci USA, 2011, 108(Suppl 1): 4586-4591. |
[8] | Usami M, Miyoshi M, Yamashita H. Gut microbiota and host metabolism in liver cirrhosis[J]. World J Gastroenterol, 2015, 21(41): 11597-11608. |
[9] | Scharlau D, Borowicki A, Habermann N, et al. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre[J]. Mutat Res, 2009, 682(1): 39-53. |
[10] | Wu YN, Zhang L, Chen T, et al. Granulocyte-macrophage colony-stimulating factor protects mice against hepatocellular carcinoma by ameliorating intestinal dysbiosis and attenuating inflammation[J]. World J Gastroenterol, 2020, 26(36): 5420-5436. |
[11] | Zhang L, Wu YN, Chen T, et al. Relationship between intestinal microbial dysbiosis and primary liver cancer[J]. Hepatobiliary Pancreat Dis Int, 2019, 18(2): 149-157. |
[12] | Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108. |
[13] | Tao XM, Wang N, Qin WX. Gut microbiota and hepatocellular carcinoma[J]. Gastrointest Tumors, 2015, 2(1): 33-40. |
[14] | Lange CM, Bojunga J, Hofmann WP, et al. Severe lactic acidosis during treatment of chronic hepatitis B with entecavir in patients with impaired liver function[J]. Hepatology, 2009, 50(6): 2001-2006. |
[15] | 冯硕. 中药治疗慢性乙肝病毒携带者、肝纤维化和肝硬化的系统评价及结论偏倚方法学研究[D]. 北京: 北京中医药大学, 2017. |
Feng S. A systematic review of traditional Chinese medicine in the treatment of chronic hepatitis B virus carriers, liver fibrosis and liver cirrhosis, and a methodological study of bias in conclusions[D]. Beijing: Beijing University of Chinese Medicine, 2017. | |
[16] | 梁文欧, 赵力超, 方祥, 等. 大豆异黄酮与肠道微生物相互作用研究进展[J]. 食品科学, 2019, 40(9): 283-289. |
Liang WO, Zhao LC, Fang X, et al. Progress in the research of the interactions of soy isoflavones with gut microbiota[J]. Food Sci, 2019, 40(9): 283-289. | |
[17] | Li DT, Feng Y, Tian ML, et al. Gut microbiota-derived inosine from dietary barley leaf supplementation attenuates colitis through PPARγ signaling activation[J]. Microbiome, 2021, 9(1): 83. |
[18] | 曲欢欢, 翟西峰, 李白雪, 等. 连翘不同部位中连翘酯苷和连翘苷的含量分析[J]. 药物分析杂志, 2008, 28(3): 382-385. |
Qu HH, Zhai XF, Li BX, et al. Study of the content of forsythiaside and forsythin from different parts of Forsythia suspensa(Thunb.) Vahl[J]. Chin J Pharm Anal, 2008, 28(3): 382-385. | |
[19] | 张炜, 张汉明, 郭美丽, 等. 连翘的药理学研究[J]. 中国现代应用药学, 2000, 17(1): 7-10. |
Zhang W, Zhang HM, Guo ML, et al. Pharmacological studies of forsythia[J]. Chin J Mod Appl Pharm, 2000, 17(1): 7-10. | |
[20] | 滕文龙, 吴永娜, 王德富, 等. 连翘叶茶对肝癌细胞增殖和迁移功能的影响及其作用机制[J]. 生物技术通报, 2024, 40(4): 287-296. |
Teng WL, Wu YN, Wang DF, et al. Effect of Forsythia suspensa leaves tea on HCC proliferation and migration function and its mechanism of action[J]. Biotechnol Bull, 2024, 40(4): 287-296. | |
[21] | 白美美. 连翘叶茶保肝作用研究[D]. 太原: 山西大学, 2018. |
Bai MM. Study on hepatoprotective effect of Forsythia suspensa leaves tea[D]. Taiyuan: Shanxi University, 2018. | |
[22] | 袁盛榕, 库宝善. 药理学实习教程[M]. 2版. 北京: 世界图书出版公司, 1994: 12-13. |
Yuan SR, Ku BS. Pharmacology Internship Tutorial[M]. 2nd ed. Beijing: World Publishing Corportion, 1994: 12-13. | |
[23] | Lin ZS, Wu JM, Wang JP, et al. Dietary Lactobacillus reuteri prevent from inflammation mediated apoptosis of liver via improving intestinal microbiota and bile acid metabolism[J]. Food Chem, 2023, 404(Pt B): 134643. |
[24] | Zhao CJ, Bao LJ, Qiu M, et al. Commensal cow Roseburia reduces gut-dysbiosis-induced mastitis through inhibiting bacterial translocation by producing butyrate in mice[J]. Cell Rep, 2022, 41(8): 111681. |
[25] | Sang JN, Zhuang DH, Zhang T, et al. Convergent and divergent age patterning of gut microbiota diversity in humans and nonhuman primates[J]. mSystems, 2022, 7(4): e0151221. |
[26] | Dai SP, Wang ZL, Yang Y, et al. PM2.5 induced weight loss of mice through altering the intestinal microenvironment: mucus barrier, gut microbiota, and metabolic profiling[J]. J Hazard Mater, 2022, 431: 128653. |
[27] | Teng SS, Zhang YF, Jin XH, et al. Structure and hepatoprotective activity of Usp10/NF-κB/Nrf2 pathway-related Morchella esculenta polysaccharide[J]. Carbohydr Polym, 2023, 303: 120453. |
[28] | Spinelli JB, Rosen PC, Sprenger HG, et al. Fumarate is a terminal electron acceptor in the mammalian electron transport chain[J]. Science, 2021, 374(6572): 1227-1237. |
[29] | Zecchini V, Paupe V, Herranz-Montoya I, et al. Fumarate induces vesicular release of mtDNA to drive innate immunity[J]. Nature, 2023, 615(7952): 499-506. |
[30] | Schubert K, Olde Damink SWM, von Bergen M, et al. Interactions between bile salts, gut microbiota, and hepatic innate immunity[J]. Immunol Rev, 2017, 279(1): 23-35. |
[31] | Guo Z, Zhang JC, Wang ZL, et al. Intestinal microbiota distinguish gout patients from healthy humans[J]. Sci Rep, 2016, 6: 20602. |
[32] | Atarashi K, Nishimura J, Shima T, et al. ATP drives lamina propria TH17 cell differentiation[J]. Nature, 2008, 455(7214): 808-812. |
[33] | Abu-Shanab A, Quigley EMM. The role of the gut microbiota in nonalcoholic fatty liver disease[J]. Nat Rev Gastroenterol Hepatol, 2010, 7(12): 691-701. |
[34] | Ye JZ, Lv LX, Wu WR, et al. Butyrate protects mice against methionine-choline-deficient diet-induced non-alcoholic steatohepatitis by improving gut barrier function, attenuating inflammation and reducing endotoxin levels[J]. Front Microbiol, 2018, 9: 1967. |
[35] | Sun SS, Wang K, Ma K, et al. An insoluble polysaccharide from the sclerotium of Poria cocos improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota[J]. Chin J Nat Med, 2019, 17(1): 3-14. |
[36] | Gadde U, Oh ST, Lee YS, et al. The effects of direct-fed microbial supplementation, as an alternative to antibiotics, on growth performance, intestinal immune status, and epithelial barrier gene expression in broiler chickens[J]. Probiotics Antimicrob Proteins, 2017, 9(4): 397-405. |
[37] | Mridha AR, Wree A, Robertson AAB, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice[J]. J Hepatol, 2017, 66(5): 1037-1046. |
[38] | 姜冰. 肝硬化患者DAO、内毒素、D-乳酸变化及在肠黏膜屏障功能评估中的作用[J]. 中国实用医药, 2017, 12(33): 33-34. |
Jiang B. Changes in DAO, endotoxin, D-lactate and intestinal mucosa in patients with cirrhosis role in the assessment of barrier function[J]. China Pract Med, 2017, 12(33): 33-34. | |
[39] | 王海娟, 戴雨珂, 潘渠. 魏斯氏菌的研究现状[J]. 成都医学院学报, 2014, 9(6): 747-750. |
Wang HJ, Dai YK, Pan Q. Current status of Weissella research[J]. J Chengdu Med Coll, 2014, 9(6): 747-750. | |
[40] | 克里斯·韦伯. 长寿密码: 来自科学前沿的健康长寿秘诀[M]. 王钊, 范丽, 译. 北京: 科学出版社, 2019. |
Verburgh K. The longevity code: secrets to living well for longer from the front lines of science[M]. Wang Z, Fan L, translated. Beijing: Science Press, 2019. |
[1] | YUAN Lan, HUANG Ya-nan, ZHANG Bei-ni, XIONG Yu-meng, WANG Hong-yang. High-throughput Sample Preparation Method for the Identification of Potato Ploidy Using Flow Cytometry [J]. Biotechnology Bulletin, 2024, 40(9): 141-147. |
[2] | MA Bo-tao, WU Guo-qiang, WEI Ming. Roles of bZIP Transcription Factor in the Response to Stresses, and Growth and Development in Plants [J]. Biotechnology Bulletin, 2024, 40(9): 148-160. |
[3] | LIU Lu, ZHU Zhe-yuan, LI Ying-xi, WANG Jie, PENG Di. Research Progress in Microbial Herbicides [J]. Biotechnology Bulletin, 2024, 40(9): 161-171. |
[4] | SONG Qian-na, DUAN Yong-hong, FENG Rui-yun. Establishment of CRISPR/Cas9-mediated Highly Efficient Gene Editing System in Microtubers of Potatoes [J]. Biotechnology Bulletin, 2024, 40(9): 33-41. |
[5] | WANG Ke-ran, YAN Jun-jie, LIU Jian-feng, GAO Yu-lin. Application and Risk of RNAi Technology in Potato Insect Pest Management [J]. Biotechnology Bulletin, 2024, 40(9): 4-10. |
[6] | ZHANG A-na, HAN Xue, GU Tian-yi, XIN Feng-jiao, WANG Yu-lu. Preparation of Low-phenylalanine Casein by Novel Phenylalanine Ammonia-lyases Derived from Rhodotorula [J]. Biotechnology Bulletin, 2024, 40(8): 309-319. |
[7] | HAN Zhong-rao, HUO Yi-xin, GUO Shu-yuan. Mechanism and Industrial Application of Bacillus Tolerance to Stress Conditions [J]. Biotechnology Bulletin, 2024, 40(8): 24-38. |
[8] | LIU Wen-hao, WU Liu-ji, XU Fang. Regulatory Mechanisms of Small Peptides in Plant Meristem Development and Its Research Advances in Crop Improvement [J]. Biotechnology Bulletin, 2024, 40(7): 1-18. |
[9] | ZHANG Zhen-yu, JIN Li-wu, WANG Jing-zun, TIAN Ling, QIAO Zi-lin, YANG Di, AYIMUGULI Abudureyimu. Research Progress in the Immortalization of Animal Cells [J]. Biotechnology Bulletin, 2024, 40(7): 78-89. |
[10] | CHEN Mo-yan, ZHU Cheng. Mechanism Study and Application of CRISPR/Cas12a-based Biosensing Platform [J]. Biotechnology Bulletin, 2024, 40(7): 90-98. |
[11] | DU Zhong-yang, YANG Ze, LIANG Meng-jing, LIU Yi-zhen, CUI Hong-li, SHI Da-ming, XUE Jin-ai, SUN Yan, ZHANG Chun-hui, JI Chun-li, LI Run-zhi. Effect of Nano-selenium(SeNPs)in Alleviating Lead Stress and Promoting Growth of Tobacco Seedlings [J]. Biotechnology Bulletin, 2024, 40(7): 183-196. |
[12] | CAI Nan, FANG Jing-ping, CHEN Bi-lian, HE Yong-jin. Research Progress in Carbon Sequestration by High-valued Isochrysis Strain [J]. Biotechnology Bulletin, 2024, 40(6): 68-80. |
[13] | ZHANG Mei-yu, ZHAO Yu-bin, WANG Ling-yun, SONG Yuan-da, ZHAO Xin-he, REN Xiao-jie. Research Progress in the Production of Functional Fatty Acid DHA by Microalga Thraustochytrids [J]. Biotechnology Bulletin, 2024, 40(6): 81-94. |
[14] | WANG Di ZHANG Xiao-yu SONG Yu-xin ZHENG Dong-ran TIAN Jing LI Yu-hua WANG Yu WU Hao. Advances in the Molecular Mechanisms of Plant Tissue Culture and Regeneration Regulated by Totipotency-related Transcription Factors [J]. Biotechnology Bulletin, 2024, 40(6): 23-33. |
[15] | JIANG Wen-ping, RAN Qiu-ping, LIU Jia-shu, ZHANG Hui-min, ZHANG Di, JIANG Zheng-bing, LI Hua-nan. Effects of Carbohydrate-binding Modules on the Enzymatic Properties of Xylanase [J]. Biotechnology Bulletin, 2024, 40(5): 269-279. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||