Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (9): 161-171.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0063
Previous Articles Next Articles
LIU Lu1(), ZHU Zhe-yuan1, LI Ying-xi1,2, WANG Jie1, PENG Di1()
Received:
2024-01-15
Online:
2024-09-26
Published:
2024-10-12
Contact:
PENG Di
E-mail:liulu_cs@163.com;smileadi@126.com
LIU Lu, ZHU Zhe-yuan, LI Ying-xi, WANG Jie, PENG Di. Research Progress in Microbial Herbicides[J]. Biotechnology Bulletin, 2024, 40(9): 161-171.
属名Genus | 微生物种类Microbial species | 主要防除对象Target weeds | 参考文献Reference |
---|---|---|---|
链格孢属Alternaria | 链格孢菌 A. alternata | 紫茎泽兰、稗草 | [ |
狭卵链格孢 A. augustiovoidea | 稗草、藜 | [ | |
链格孢属真菌 A. perpunctulata | 马唐 | [ | |
极细链格孢菌 A. tenuissima | 藜和密花香薷 | [ | |
炭疽菌属Colletotrichum | 胶孢炭疽菌 C. gloeosporioides | 菟丝子、田菁属杂草、双子叶杂草 | [ |
球状炭疽菌 C. coccodes | 苘麻 | [ | |
牛筋草炭疽菌 C. eleusines | 牛筋草 | [ | |
镰刀菌属Fusarium | 镰刀菌 F. orobanches | 列当、喜旱莲子草 | [ |
层出镰刀菌 F. proliferatum | 藜和密花香薷 | [ | |
蕉斑镰刀菌 F. stoveri | 空心莲子草 | [ | |
茎点霉属Phoma | 草茎点霉菌 P. herbarum | 鸭跖草、银胶菊 | [ |
藜生茎点霉 P. chenopodiicola | 藜 | [ | |
鸭跖草茎点霉 P. commelinicola | 鸭跖草属 | [ | |
巨口茎点霉 P. macrostoma | 阔叶杂草 | [ | |
茎点霉属真菌 P. bellidis | 黄花油点草 | [ | |
弯孢属Curvularia | 画眉草弯孢霉菌 C. eragrostidis | 马唐、千金子、稗草 | [ |
新月弯孢菌 C. lunata | 稗草 | [ | |
平脐蠕孢属Bipolaris | 蟋蟀草平脐蠕孢菌 B. eleusines | 稗草 | [ |
双色平脐蠕孢菌 B. bicolor Mitra Shoem | 牛筋草、棻枝莠竹、狗尾草等 | [ | |
稷平脐蠕孢 B. panicimiliacei | 禾本科杂草 | [ | |
其他属Others | 荧光假单胞菌 Pseudomonas fluorescens | 旱雀麦 | [ |
出芽短梗霉菌 Aureobasidium pullulans | 猪殃殃、藜、冬葵、酸模叶蓼及野燕麦 | [ | |
尖角突脐孢 Exserohilum monoceras | 稗草 | [ | |
球孢白僵菌 Beauveria bassiana | 野燕麦、牛筋草 | [ | |
齐整小核菌 Sclerotium rolfsii | 加拿大一枝黄花 | [ | |
内脐蠕孢菌 Drechslera gigantea | 马唐、蒺藜草、金色狗尾草 | [ | |
疫霉菌 Phytophthora nicotianae | 麦瓶草、播娘篙和反枝觅 | [ | |
假隔链格孢 Nimbya alternantherae | 空心莲子草 | [ | |
小孢拟盘多毛孢 Pestalotiopsis microspore | 马唐、狗尾草、播娘蒿 | [ | |
多孢木霉 Trichoderma polysporum | 密花香薷 | [ | |
链霉菌属 Streptomyces sp. | 稗草、反枝苋和狗牙草等 | [ | |
野油菜黄单胞菌 Xanthomonas campestris | 小蓬草 | [ | |
壳二孢属 Ascochyta caulina | 藜 | [ | |
尾孢菌属 Cercospora piaropi | 凤眼莲 | [ | |
小球壳孢属 Microsphaeropsis amaranthi | 苋属杂草 | [ | |
拟点霉属 Phomopsis amaranthicola | 苋属杂草 | [ | |
柄锈菌属 Puccinia romagnoliana | 莎草 | [ | |
小菌核菌 Sclerotinia minor | 阔叶车前草等 | [ | |
高地芽孢杆菌 Bacillus altitudinis | 自生油菜,藜等 | [ | |
蜡样芽孢杆菌 B. cereus | 马唐等 | [ | |
肠杆菌属 Enterobacter sp. | 稗草、马齿苋 | [ |
Table 1 Pathogenic microorganisms used in the study of microbial herbicides and their target weeds
属名Genus | 微生物种类Microbial species | 主要防除对象Target weeds | 参考文献Reference |
---|---|---|---|
链格孢属Alternaria | 链格孢菌 A. alternata | 紫茎泽兰、稗草 | [ |
狭卵链格孢 A. augustiovoidea | 稗草、藜 | [ | |
链格孢属真菌 A. perpunctulata | 马唐 | [ | |
极细链格孢菌 A. tenuissima | 藜和密花香薷 | [ | |
炭疽菌属Colletotrichum | 胶孢炭疽菌 C. gloeosporioides | 菟丝子、田菁属杂草、双子叶杂草 | [ |
球状炭疽菌 C. coccodes | 苘麻 | [ | |
牛筋草炭疽菌 C. eleusines | 牛筋草 | [ | |
镰刀菌属Fusarium | 镰刀菌 F. orobanches | 列当、喜旱莲子草 | [ |
层出镰刀菌 F. proliferatum | 藜和密花香薷 | [ | |
蕉斑镰刀菌 F. stoveri | 空心莲子草 | [ | |
茎点霉属Phoma | 草茎点霉菌 P. herbarum | 鸭跖草、银胶菊 | [ |
藜生茎点霉 P. chenopodiicola | 藜 | [ | |
鸭跖草茎点霉 P. commelinicola | 鸭跖草属 | [ | |
巨口茎点霉 P. macrostoma | 阔叶杂草 | [ | |
茎点霉属真菌 P. bellidis | 黄花油点草 | [ | |
弯孢属Curvularia | 画眉草弯孢霉菌 C. eragrostidis | 马唐、千金子、稗草 | [ |
新月弯孢菌 C. lunata | 稗草 | [ | |
平脐蠕孢属Bipolaris | 蟋蟀草平脐蠕孢菌 B. eleusines | 稗草 | [ |
双色平脐蠕孢菌 B. bicolor Mitra Shoem | 牛筋草、棻枝莠竹、狗尾草等 | [ | |
稷平脐蠕孢 B. panicimiliacei | 禾本科杂草 | [ | |
其他属Others | 荧光假单胞菌 Pseudomonas fluorescens | 旱雀麦 | [ |
出芽短梗霉菌 Aureobasidium pullulans | 猪殃殃、藜、冬葵、酸模叶蓼及野燕麦 | [ | |
尖角突脐孢 Exserohilum monoceras | 稗草 | [ | |
球孢白僵菌 Beauveria bassiana | 野燕麦、牛筋草 | [ | |
齐整小核菌 Sclerotium rolfsii | 加拿大一枝黄花 | [ | |
内脐蠕孢菌 Drechslera gigantea | 马唐、蒺藜草、金色狗尾草 | [ | |
疫霉菌 Phytophthora nicotianae | 麦瓶草、播娘篙和反枝觅 | [ | |
假隔链格孢 Nimbya alternantherae | 空心莲子草 | [ | |
小孢拟盘多毛孢 Pestalotiopsis microspore | 马唐、狗尾草、播娘蒿 | [ | |
多孢木霉 Trichoderma polysporum | 密花香薷 | [ | |
链霉菌属 Streptomyces sp. | 稗草、反枝苋和狗牙草等 | [ | |
野油菜黄单胞菌 Xanthomonas campestris | 小蓬草 | [ | |
壳二孢属 Ascochyta caulina | 藜 | [ | |
尾孢菌属 Cercospora piaropi | 凤眼莲 | [ | |
小球壳孢属 Microsphaeropsis amaranthi | 苋属杂草 | [ | |
拟点霉属 Phomopsis amaranthicola | 苋属杂草 | [ | |
柄锈菌属 Puccinia romagnoliana | 莎草 | [ | |
小菌核菌 Sclerotinia minor | 阔叶车前草等 | [ | |
高地芽孢杆菌 Bacillus altitudinis | 自生油菜,藜等 | [ | |
蜡样芽孢杆菌 B. cereus | 马唐等 | [ | |
肠杆菌属 Enterobacter sp. | 稗草、马齿苋 | [ |
类型 Type | 毒素 Toxin | 来源 Origin | 作用机理 Mechanism | 参考文献Reference |
---|---|---|---|---|
细菌性植物毒素 | Tabtoxin(烟草野火病菌毒素) | Pseudomonas syringae pv tabaci | 抑制谷氨酰胺合成酶的活性 | [ |
Phaseolotoxin(菜豆素毒素) | P. syringae pv phaseolicola | 抑制鸟氨酸氨甲酰基转移酶的活性 | [ | |
Coronatine(冠菌素) | P. coronafacience | 抑制水杨酸 | [ | |
放线菌性植物毒素 | Bialaphos(双丙氨膦) | Streptomyces hygroscopis | 抑制光合磷酸化作用 | [ |
Oxetin(氧丁霉素) | Streptomyces sp. | GS抑制剂 | [ | |
Phosalacine | Kitasatosporia phosalacinea | GS抑制剂 | [ | |
Hydantocidin | S. hygroscopis | 腺苷酸琥珀酸合成酶抑制剂 | [ | |
Actinonin(放线酰胺素) | Actinomyces sp. | 抑制质体肽去甲酰化酶的活性 | [ | |
Phthoxazolin | Streptomyces sp. | 抑制纤维素的生物合成 | [ | |
Pyridazocidin | Streptomyces sp. | 催化梅勒反应 | [ | |
Nigericin(尼日利亚菌素) | S. hygroscopicus | 抑制光合作用 | [ | |
真菌毒素 | Maculosin | Alternaria alternata | 作用于叶绿体 | [ |
AAL-toxin | A. alternate. f. sp. Lycopersici | 抑制植物中神经酰胺合酶 | [ | |
TeA toxin(细交链孢菌酮酸) | A. alternata | 抑制光系统II电子传递活性 | [ | |
Tentoxin(腾毒素) | A. alternata | 抑制叶绿体的发育过程 | [ | |
Zinniol | Alternaria; Phoma macdonaldii | 作用于钙离子通道上 | [ | |
Colletotrichin刺盘孢菌素) | Colletotrichum sp. | 破坏质膜 | [ | |
Cercosporin(尾孢菌素) | Cercospora sp. | 引发细胞膜过氧化 | [ | |
Ophiobolin(蛇孢假壳素) | Bipolaris sp. | 影响质膜 | [ | |
Cyperin(莎草素) | A. cypericola、P. sorghina等 | 抑制植物烯酰还原酶 | [ | |
Beticolins | Cercospora beticola | 破坏细胞膜功能 | [ | |
Fusicoccin(壳梭孢菌素) | Fusicoccum amygdali | 活化植物质膜H+-ATP合酶 | [ | |
Macrocidins | P. macrostoma | 抑制类胡萝卜素合成 | [ |
Table 2 Toxin with herbicidal activity
类型 Type | 毒素 Toxin | 来源 Origin | 作用机理 Mechanism | 参考文献Reference |
---|---|---|---|---|
细菌性植物毒素 | Tabtoxin(烟草野火病菌毒素) | Pseudomonas syringae pv tabaci | 抑制谷氨酰胺合成酶的活性 | [ |
Phaseolotoxin(菜豆素毒素) | P. syringae pv phaseolicola | 抑制鸟氨酸氨甲酰基转移酶的活性 | [ | |
Coronatine(冠菌素) | P. coronafacience | 抑制水杨酸 | [ | |
放线菌性植物毒素 | Bialaphos(双丙氨膦) | Streptomyces hygroscopis | 抑制光合磷酸化作用 | [ |
Oxetin(氧丁霉素) | Streptomyces sp. | GS抑制剂 | [ | |
Phosalacine | Kitasatosporia phosalacinea | GS抑制剂 | [ | |
Hydantocidin | S. hygroscopis | 腺苷酸琥珀酸合成酶抑制剂 | [ | |
Actinonin(放线酰胺素) | Actinomyces sp. | 抑制质体肽去甲酰化酶的活性 | [ | |
Phthoxazolin | Streptomyces sp. | 抑制纤维素的生物合成 | [ | |
Pyridazocidin | Streptomyces sp. | 催化梅勒反应 | [ | |
Nigericin(尼日利亚菌素) | S. hygroscopicus | 抑制光合作用 | [ | |
真菌毒素 | Maculosin | Alternaria alternata | 作用于叶绿体 | [ |
AAL-toxin | A. alternate. f. sp. Lycopersici | 抑制植物中神经酰胺合酶 | [ | |
TeA toxin(细交链孢菌酮酸) | A. alternata | 抑制光系统II电子传递活性 | [ | |
Tentoxin(腾毒素) | A. alternata | 抑制叶绿体的发育过程 | [ | |
Zinniol | Alternaria; Phoma macdonaldii | 作用于钙离子通道上 | [ | |
Colletotrichin刺盘孢菌素) | Colletotrichum sp. | 破坏质膜 | [ | |
Cercosporin(尾孢菌素) | Cercospora sp. | 引发细胞膜过氧化 | [ | |
Ophiobolin(蛇孢假壳素) | Bipolaris sp. | 影响质膜 | [ | |
Cyperin(莎草素) | A. cypericola、P. sorghina等 | 抑制植物烯酰还原酶 | [ | |
Beticolins | Cercospora beticola | 破坏细胞膜功能 | [ | |
Fusicoccin(壳梭孢菌素) | Fusicoccum amygdali | 活化植物质膜H+-ATP合酶 | [ | |
Macrocidins | P. macrostoma | 抑制类胡萝卜素合成 | [ |
商品名Commercial name | 成分Active ingredient | 目标杂草Target weed | 生产国家Manufacturer |
---|---|---|---|
Dr. Biosedge | 纵沟柄绣菌 Puccinia canaliculata | 油莎草 | 美国 |
Biochon | 银叶菌 Chondrostereum purureum | 野黑樱 | 荷兰 |
Devine | 棕榈疫霉菌 Phytophthora palimivora | 柑橘园莫伦藤 | 美国 |
Collego | 胶孢炭疽菌 Colletotrichum gloeosporioides | 弗吉尼亚合萌 | 美国 |
BioMal | 盘长孢状刺盘孢锦葵专化型C. gloeosporioides. f. sp. malvae | 圆叶锦葵、苘麻 | 加拿大 |
鲁保1号 | 胶孢炭疽菌 C. gloeosporioides | 菟丝子 | 中国 |
Camperico | 黄单胞杆菌 Xanthomonas campestris | 早熟禾及剪股颖 | 日本 |
CASST | Alternaria crassae | 钝叶决明、望江南 | 美国 |
Tasmart | Drechslera monoceras | 稗草 | 日本 |
D7菌株制剂 | 荧光假单胞菌 Pseudomonas fluorescens | 旱雀麦 | 美国 |
MBI-014 | 伯克霍尔德氏菌 Burkholderia rinojensis | 苋属杂草 | 美国 |
“Ф”制剂 | 镰刀菌 Fusarium orobanches | 列当 | 苏联 |
MYX-1200 | 砖红镰孢 Fusarium lateritium | 豆科杂草 | 美国 |
Bialaphos | 链霉菌 Streptomyce hygroscopicus | 一年及多年生杂草 | 中国 |
Smolder | A. destruens | 菟丝子属杂草 | 美国 |
Woad Warrior | Puccinia thlaspeos | 合欢属杂草 | 南非 |
Montagne 94-44B | 巨腔茎点霉 Phoma macrostoma | 蒲公英 | 加拿大 |
Table 3 Microbial herbicide products
商品名Commercial name | 成分Active ingredient | 目标杂草Target weed | 生产国家Manufacturer |
---|---|---|---|
Dr. Biosedge | 纵沟柄绣菌 Puccinia canaliculata | 油莎草 | 美国 |
Biochon | 银叶菌 Chondrostereum purureum | 野黑樱 | 荷兰 |
Devine | 棕榈疫霉菌 Phytophthora palimivora | 柑橘园莫伦藤 | 美国 |
Collego | 胶孢炭疽菌 Colletotrichum gloeosporioides | 弗吉尼亚合萌 | 美国 |
BioMal | 盘长孢状刺盘孢锦葵专化型C. gloeosporioides. f. sp. malvae | 圆叶锦葵、苘麻 | 加拿大 |
鲁保1号 | 胶孢炭疽菌 C. gloeosporioides | 菟丝子 | 中国 |
Camperico | 黄单胞杆菌 Xanthomonas campestris | 早熟禾及剪股颖 | 日本 |
CASST | Alternaria crassae | 钝叶决明、望江南 | 美国 |
Tasmart | Drechslera monoceras | 稗草 | 日本 |
D7菌株制剂 | 荧光假单胞菌 Pseudomonas fluorescens | 旱雀麦 | 美国 |
MBI-014 | 伯克霍尔德氏菌 Burkholderia rinojensis | 苋属杂草 | 美国 |
“Ф”制剂 | 镰刀菌 Fusarium orobanches | 列当 | 苏联 |
MYX-1200 | 砖红镰孢 Fusarium lateritium | 豆科杂草 | 美国 |
Bialaphos | 链霉菌 Streptomyce hygroscopicus | 一年及多年生杂草 | 中国 |
Smolder | A. destruens | 菟丝子属杂草 | 美国 |
Woad Warrior | Puccinia thlaspeos | 合欢属杂草 | 南非 |
Montagne 94-44B | 巨腔茎点霉 Phoma macrostoma | 蒲公英 | 加拿大 |
[1] | Ruuskanen S, Fuchs B, Nissinen R, et al. Ecosystem consequences of herbicides: the role of microbiome[J]. Trends Ecol Evol, 2023, 38(1): 35-43. |
[2] | Travlos I, de Prado R, Chachalis D, et al. Editorial: herbicide resistance in weeds: early detection, mechanisms, dispersal, new insights and management issues[J]. Frontiers in Ecology and Evolution, 2020, 8: 213. |
[3] | Singh UP, Kamboj A, Sharma M. Herbicide resistance in weed and its management-A review[J]. International Journal of Education Technique & Science Research, 2020, 8(12): 2455-6211. |
[4] | Radhakrishnan R, Alqarawi AA, Abd Allah EF. Bioherbicides: current knowledge on weed control mechanism[J]. Ecotoxicol Environ Saf, 2018, 158: 131-138. |
[5] | Hasan M, Ahmad-Hamdani MS, Rosli AM, et al. Bioherbicides: an eco-friendly tool for sustainable weed management[J]. Plants, 2021, 10(6): 1212. |
[6] | Macías-Rubalcava ML, Garrido-Santos MY. Phytotoxic compounds from endophytic fungi[J]. Appl Microbiol Biotechnol, 2022, 106(3): 931-950. |
[7] | Adetunji CO, Oloke JK, Prasad G, et al. Isolation, identification, characterization, and screening of rhizospheric bacteria for herbicidal activity[J]. Org Agric, 2018, 8(3): 195-205. |
[8] | Triolet M, Edel-Hermann V, Gautheron N, et al. Weeds harbor an impressive diversity of fungi, which offers possibilities for biocontrol[J]. Appl Environ Microbiol, 2022, 88(6): e0217721. |
[9] | Mathur M, Gehlot P. Recruit the plant pathogen for weed management: bioherbicide-A sustainable strategy[M]// Fungi and their Role in Sustainable Development:Current Perspectives. Singapore: Springer, 2018: 159-181. |
[10] | Bendejacq-Seychelles A, Gibot-Leclerc S, Guillemin JP, et al. Phytotoxic fungal secondary metabolites as herbicides[J]. Pest Manag Sci, 2024, 80(1): 92-102. |
[11] | Hershenhorn J, Casella F, Vurro M. Weed biocontrol with fungi: past, present and future[J]. Biocontrol Sci Technol, 2016, 26(10): 1313-1328. |
[12] |
Chen SG, Qiang S. Recent advances in tenuazonic acid as a potential herbicide[J]. Pestic Biochem Physiol, 2017, 143: 252-257.
doi: S0048-3575(17)30005-6 pmid: 29183600 |
[13] | Wang H, Guo YJ, Luo Z, et al. Recent advances in Alternaria phytotoxins: a review of their occurrence, structure, bioactivity, and biosynthesis[J]. J Fungi, 2022, 8(2): 168. |
[14] | 李东阳. 狭卵链格孢(Alternaria angustiovoidea)CH-1菌株生防潜力研究[D]. 沈阳: 沈阳农业大学, 2022. |
Li DY. Study on biocontrol potential of Alternaria angustiovoidea CH-1 strain[D]. Shenyang: Shenyang Agricultural University, 2022. | |
[15] | 吴兆圆, 任梦瑶, 张志刚, 等. Alternaria perpunctulata NBERC_H56菌株对马唐的除草活性及其次级代谢产物的分离鉴定[J]. 湖北农业科学, 2021, 60(24): 98-100, 129. |
Wu ZY, Ren MY, Zhang ZG, et al. Herbicidal activity of Alternaria perpunctulata NBERC_H56 to Digitaria sanguinalis and the secondary metabolites produced by the strain[J]. Hubei Agric Sci, 2021, 60(24): 98-100, 129. | |
[16] | 朱海霞, 马永强. 除草活性菌株极细链格孢菌(Alternaria tenuissima)发酵工艺研究[J]. 甘肃农业大学学报, 2020, 55(1): 63-71. |
Zhu HX, Ma YQ. Study on fermentation optimization of herbicidal activity strain Alternaria tenuissima[J]. J Gansu Agric Univ, 2020, 55(1): 63-71. | |
[17] | 徐兆林. Colletotrichum gloeosporioides BWH-1次级代谢产物的分离、鉴定和生物活性研究[D]. 广州: 华南农业大学, 2020. |
Xu ZL. Secondary metabolites of Colletotrichum gloeosporioides BWH-1: isolation, identification and biological activities study[D]. Guangzhou: South China Agricultural University, 2020. | |
[18] | Chakraborty A, Ray P. Mycoherbicides for the noxious meddlesome: can Colletotrichum be a budding candidate?[J]. Front Microbiol, 2021, 12: 754048. |
[19] |
顾琼楠, 欧翔, 褚世海, 等. 牛筋草生防菌NJC-16的分离鉴定及生物学特性研究[J]. 中国生物防治学报, 2021, 37(4): 817-825.
doi: 10.16409/j.cnki.2095-039x.2021.04.009 |
Gu QN, Ou X, Chu SH, et al. Isolation, identification, and biological characteristics of the biocontrol fungi NJC-16 for Eleusine indica[J]. Chin J Biol Contr, 2021, 37(4): 817-825. | |
[20] | A. Evidente MAAAAAC. Recent achievements in the bio-control of Orobanche infesting important crops in the Mediterranean Basin[J]. J. Agric. Sci. Technol, 2011, 1: 461-483. |
[21] | 朱海霞, 马永强, 郭青云. 层出镰孢菌GD-5固态发酵培养条件及对藜和密花香薷的除草活性[J]. 植物保护学报, 2018, 45(5): 1154-1160. |
Zhu HX, Ma YQ, Guo QY. Solid culture conditions of Fusarium proliferatum GD-5 and its herbicidal activity to weeds Chenopodium album and Elsholtzia densa[J]. J Plant Prot, 2018, 45(5): 1154-1160. | |
[22] | Todero I, Confortin TC, Luft L, et al. Concentration of exopolysaccharides produced by Fusarium fujikuroi and application of bioproduct as an effective bioherbicide[J]. Environ Technol, 2020, 41(21): 2742-2749. |
[23] | Todero I, Confortin TC, Luft L, et al. Formulation of a bioherbicide with metabolites from Phoma sp[J]. Sci Hortic, 2018, 241: 285-292. |
[24] |
Evidente M, Cimmino A, Zonno MC, et al. Phytotoxins produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album[J]. Phytochemistry, 2015, 117: 482-488.
doi: S0031-9422(15)30047-9 pmid: 26226110 |
[25] | Srisuksam C, Yodpanan P, Suntivich R, et al. The fungus Phoma multirostrata is a host-specific pathogen and a potential biocontrol agent for a broadleaf weed[J]. Fungal Biol, 2022, 126(2): 162-173. |
[26] | Rai M, Zimowska B, Shinde S, et al. Bioherbicidal potential of different species of Phoma: opportunities and challenges[J]. Appl Microbiol Biotechnol, 2021, 105(8): 3009-3018. |
[27] | Krupska J, Watson AK. Curvularia eragrostidisisolates(Dematiaceae)for biocontrol of crabgrass(Digitaria spp.) in Canada[J]. Biocontrol Sci Technol, 2021, 31(9): 924-950. |
[28] | 钟加日, 刘璐, 曾颖, 等. 稗草生防菌NX2A的鉴定、安全性及对稗草的致病条件[J]. 南方农业学报, 2022, 53(2): 469-476. |
Zhong JR, Liu L, Zeng Y, et al. The identification, safety, and efficacy of the biocontrol fungi NX2A for Echinochloa crusgalli[J]. J South Agric, 2022, 53(2): 469-476. | |
[29] | Zhang JP, Duan GF, Yang S, et al. Improved bioherbicidal efficacy of Bipolaris eleusines through herbicide addition on weed control in paddy rice[J]. Plants, 2022, 11(19): 2659. |
[30] | 肖婉. 双色平脐蠕孢SYNJC-2-2菌株作为茶园杂草生防菌潜力的评估[D]. 南京: 南京农业大学, 2020. |
Xiao W. Evaluation of the potential of Bipolaris bicolor strain SYNJC-2-2 as a biocontrol agent of weeds in tea gardens[D]. Nanjing: Nanjing Agricultural University, 2020. | |
[31] | Tan M, Ding RY, Huang Q, et al. Evaluation of Bipolaris panici-miliacei as a bioherbicide against Microstegium vimineum[J]. Biocontrol Sci Technol, 2022, 32(2): 178-195. |
[32] | Tekiela DR. Effect of the bioherbicide Pseudomonas fluorescens D7 on downy brome(Bromus tectorum)[J]. Rangel Ecol Manag, 2020, 73(6): 753-755. |
[33] | 刘晓芳, 杨莹, 高汉峰, 等. 出芽短梗霉菌株PA-2侵染藜叶片的转录组分析[J]. 分子植物育种, 2023, 21(5): 1521-1534. |
Liu XF, Yang Y, Gao HF, et al. Transcriptome analysis of Chenopodium album leaves infected by Aureobasidium pullulans strain PA-2[J]. Mol Plant Breed, 2023, 21(5): 1521-1534. | |
[34] |
张亚鑫, 肖婉, 张峥, 等. 稻田稗属杂草致病菌的分离与鉴定[J]. 中国生物防治学报, 2021, 37(6): 1276-1287.
doi: 10.16409/j.cnki.2095-039x.2021.06.026 |
Zhang YX, Xiao W, Zhang Z, et al. Isolation and identification of plant pathogens of barnyard grass in the paddy fields[J]. Chin J Biol Contr, 2021, 37(6): 1276-1287. | |
[35] | Cheng L, Wei YH, Zhu HX, et al. Herbicidal activity of Beauveria sp. from Tibetan Plateau biome against Avena fatua L[J]. Biocontrol Sci Technol, 2021, 31(3): 265-283. |
[36] | Bordin ER, Frumi Camargo A, Stefanski FS, et al. Current production of bioherbicides: mechanisms of action and technical and scientific challenges to improve food and environmental security[J]. Biocatal Biotransform, 2021, 39(5): 346-359. |
[37] | Akbar M, Khalil T, Andolfi A, et al. Isolation and identification of natural herbicidal compound from a plant pathogenic fungus, Drechslera biseptata[J]. Pak J Bot, 2020, 52(6): 2245-2249. |
[38] |
Harding DP, Raizada MN. Controlling weeds with fungi, bacteria and viruses: a review[J]. Front Plant Sci, 2015, 6: 659.
doi: 10.3389/fpls.2015.00659 pmid: 26379687 |
[39] | 李伟佳. 抑草活性菌株的筛选及其作用机理的初探[D]. 西宁: 青海大学, 2020. |
Li WJ. Screening of strains with inhibitory activity against weed and its preliminary inhibitory mechanisms[D]. Xining: Qinghai University, 2020. | |
[40] | Zhu HX, Ma YQ, Guo QY, et al. Biological weed control using Trichoderma polysporum strain HZ-31[J]. Crop Prot, 2020, 134: 105161. |
[41] | Priya dharsini P, Dhanasekaran D, Gopinath PM, et al. Spectroscopic identification and molecular modeling of diethyl 7-hydroxytrideca-2, 5, 8, 11-tetraenedioate: a herbicidal compound from Streptomyces sp[J]. Arab J Sci Eng, 2017, 42(6): 2217-2227. |
[42] | Boyette CD, Hoagland RE. Bioherbicidal potential ofXanthomonas campestrisfor controlling Conyza canadensis[J]. Biocontrol Sci Technol, 2015, 25(2): 229-237. |
[43] |
程海洋, 程亮, 朱海霞, 等. 链格孢菌DT-DYLC菌株的除草活性及对作物的安全性[J]. 中国生物防治学报, 2023, 39(2): 418-428.
doi: 10.16409/j.cnki.2095-039x.2023.02.016 |
Cheng HY, Cheng L, Zhu HX, et al. Herbicidal activity and safety to crops of Alternaria alternata DT-DYLC[J]. Chin J Biol Contr, 2023, 39(2): 418-428. | |
[44] | Mutebi CM, Musyimi DM, Opande GT. Bio control of water hyacinth with Cercospora piaropi and Myrothecium roridum corn oil formulations for enhanced water resources management and conservation[J]. East Afr J Sci Technol Innov, 2021, 2:1-15. |
[45] | Smith DA, Hallett SG. Interactions between chemical herbicides and the candidate bioherbicide Microsphaeropsis amaranthi[J]. Weed Sci, 2006, 54(3): 532-537. |
[46] | 张红梅, 陈玉湘, 徐士超, 等. 生物源除草活性物质开发及应用研究进展[J]. 农药学学报, 2021, 23(6): 1031-1045. |
Zhang HM, Chen YX, Xu SC, et al. Research progress on development and application of bio-sourced herbicidal active substances[J]. Chin J Pestic Sci, 2021, 23(6): 1031-1045. | |
[47] | Bourdôt GW, Casonato SG. Broad host-range pathogens as bioherbicides: managing nontarget plant disease risk[J]. Pest Manag Sci, 2024, 80(1): 28-34. |
[48] | 张秀雨, 马秀花, 李玮, 等. 芽孢杆菌复合菌群的构建及其对野燕麦除草活性研究[J]. 南方农业学报, 2022, 53(12): 3444-3452. |
Zhang XY, Ma XH, Li W, et al. Construction of Bacillus compound flora and its herbicidal activity against Avena fatua L[J]. J South Agric, 2022, 53(12): 3444-3452. | |
[49] |
Radhakrishnan R, Park JM, Lee IJ. Enterobacter sp. I-3, a bio-herbicide inhibits gibberellins biosynthetic pathway and regulates abscisic acid and amino acids synthesis to control plant growth[J]. Microbiol Res, 2016, 193: 132-139.
doi: S0944-5013(16)30057-X pmid: 27825481 |
[50] | Antony A, Karuppasamy R. Bioherbicides for sustainable barnyard grass management in paddy field: an in-silico perspective[J]. Nat Prod Res, 2023, 37(22): 3857-3861. |
[51] | Shi LQ, Wu ZY, Zhang YN, et al. Herbicidal secondary metabolites from actinomycetes: structure diversity, modes of action, and their roles in the development of herbicides[J]. J Agric Food Chem, 2020, 68(1): 17-32. |
[52] | Bo AB, Kim JD, Kim YS, et al. Isolation, identification and characterization of Streptomyces metabolites as a potential bioherbicide[J]. PLoS One, 2019, 14(9): e0222933. |
[53] | Prem Anand K, Suthindhiran K. Screening and analysis of actinobacterial bioherbicides for weed management[M]// Methods in Actinobacteriology. New York: Humana, 2022: 537-544. |
[54] | Charudattan R. Use of plant viruses as bioherbicides: the first virus-based bioherbicide and future opportunities[J]. Pest Manag Sci, 2024, 80(1): 103-114. |
[55] | Singh AK, Pandey AK. Exploitation of fungal phytotoxin as natural herbicide for ecofriendly weed management: problems and prospects[J]. International J Plant Environment, 2020, 6(3): 211-214. |
[56] | Ibrahim G. Using to Pseudomonas aeruginosa control some kinds of weeds and its effect on soil microbes[J]. J Soil Sci Agric Eng, 2023, 14(7): 195-201. |
[57] | Berestetskiy AO. A review of fungal phytotoxins: from basic studies to practical use[J]. Appl Biochem Microbiol, 2008, 44(5): 453-465. |
[58] |
宋开南, 谢李楠, 徐玉泉. 真菌除草活性次级代谢产物研究进展[J]. 生物技术进展, 2023, 13(2): 181-194.
doi: 10.19586/j.2095-2341.2022.0141 |
Song KN, Xie LN, Xu YQ. Progress of fungal secondary metabolites with potential herbicidal activity[J]. Curr Biotechnol, 2023, 13(2): 181-194.
doi: 10.19586/j.2095-2341.2022.0141 |
|
[59] | Dalinova AA, Salimova DR, Berestetskiy AO. Fungi of the Genera Alternaria as producers of biological active compounds and mycoherbicides[J]. Appl Biochem Microbiol, 2020, 56(3): 256-272. |
[60] | Zhao XL, Niu YC, Deng H, et al. Characterization and phytotoxicity of ophiobolins produced by Bipolaris setariae[J]. Mycoscience, 2021, 62(1): 64-70. |
[61] | Treiber L, Pezolt C, Zeng HX, et al. Dual agents: fungal macrocidins and synthetic analogues with herbicidal and antibiofilm activities[J]. Antibiotics, 2021, 10(8): 1022. |
[62] | Camargo AF, Stefanski FS, Scapini T, et al. Resistant weeds were controlled by the combined use of herbicides and bioherbicides[J]. Environ Qual Manag, 2019, 29(1): 37-42. |
[63] | Duke SO, Pan ZQ, Bajsa-Hirschel J, et al. The potential future roles of natural compounds and microbial bioherbicides in weed management in crops[J]. Adv Weed Sci, 2022, 40(spe1): e020210054. |
[64] | Muchhadiya RM, Kumawat PD, Sakarvadia HL, et al. Weed management with the use of nano-encapsulated herbicide formulations: A review[J]. Pharma Innovation, 2022, 11(12): 2068-2075. |
[65] | Susha VS, Sagar H, Das TK. The possible role of nanotechnological interventions in weed management-An opinion[J]. Indian J Weed Sci, 2022, 54(2): 116-123. |
[66] | 邹益泽. 草茎点霉水分散粒剂的研发及其对鸭跖草防除效果研究[D]. 沈阳: 沈阳农业大学, 2019. |
Zou YZ. Development of Phoma herbarum WG and its control effect against Commelina communis L.[D]. Shenyang: Shenyang Agricultural University, 2019. | |
[67] | Vurro M, Andolfi A, Boari A, et al. Optimization of the production of herbicidal toxins by the fungus Ascochyta caulina[J]. Biol Contr, 2012, 60(2): 192-198. |
[68] | Chen K, Yang HN, Wu D, et al. Weed biology and management in the multi-omics era: progress and perspectives[J]. Plant Commun, 2024, 5(4): 100816. |
[69] | 程鹏. 马唐生防菌Epicoccum sorghinum除草活性代谢产物生物合成相关基因筛选[D]. 合肥: 安徽农业大学, 2022. |
Cheng P. Screening of genes related to biosynthesis of herbicidal active metabolites from Epicoccum sorghinum[D]. Hefei: Anhui Agricultural University, 2022. | |
[70] | 康烨. 紫茎泽兰致病型链格孢菌致病毒力因子的研究[D]. 南京: 南京农业大学, 2017. |
Kang Y. Study on the virulence factors of Alternaria alternata croftonweed pathotype infection of its host[D]. Nanjing: Nanjing Agricultural University, 2017. |
[1] | LIU Chuan-he, HE Han, SHAO Xue-hua, HE Xiu-gu. Analysis of Differential Metabolites and Bacterial Community Structure in the Soils of a Pineapple Orchard under Different Mulching Treatments [J]. Biotechnology Bulletin, 2024, 40(7): 247-258. |
[2] | WANG Li-chao, LI Huan, SHENG Ruo-cheng, LI Min, CHEN Feng-mao. Role of Acetylation in the Pathogenic Process of Plant Pathogens [J]. Biotechnology Bulletin, 2024, 40(5): 1-12. |
[3] | PENG Feng, YU Hai-xia, ZHANG Kun, LIU Ying-ying, TAN Gui-yu. Review on the Regulation of Caleosin on Plant Lipid Droplet [J]. Biotechnology Bulletin, 2024, 40(4): 33-39. |
[4] | LEI Qi-yi, XU Yang, LI Peng-fei. Influence and Mechanism of Bacteroides fragilis Type VI Secretory System on the Intestinal Barrier [J]. Biotechnology Bulletin, 2024, 40(3): 286-295. |
[5] | XU Pei-dong, YI Jian-feng, CHEN Di, PAN Lei, XIE Bing-yan, ZHAO Wen-jun. Research Progress in the Biocontrol Secondary Metabolites of Bacillus velezensis [J]. Biotechnology Bulletin, 2024, 40(3): 75-88. |
[6] | YANG Wen-li, ZHU Li-li, CHEN Jian, CHEN Yan-xin, YAO Juan, JIANG Da-gang. Research Progress in the Reference Materials of Crop Pathogens in China [J]. Biotechnology Bulletin, 2024, 40(2): 31-37. |
[7] | ZHOU Ai-ting, PENG Rui-qi, WANG Fang, WU Jian-rong, MA Huan-cheng. Analysis of Metabolic Differences of Biocontrol Strain DZY6715 at Different Growth Stages [J]. Biotechnology Bulletin, 2023, 39(9): 225-235. |
[8] | SHA Shan-shan, DONG Shi-rong, YANG Yu-ju. Research Progress in Gut Microbiota and Metabolites Regulating Host Intestinal Immunity [J]. Biotechnology Bulletin, 2023, 39(8): 126-136. |
[9] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[10] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
[11] | YANG Yu-ping, ZHANG Xia, WANG Chong-chong, WANG Xiao-yan. Study on Urine Metabolomics in Rats of Different Ages [J]. Biotechnology Bulletin, 2022, 38(2): 166-172. |
[12] | YANG Rui-xian, LIU Ping, WANG Zu-hua, RUAN Bao-shuo, WANG Zhi-da. Analysis of Antimicrobial Active Metabolites from Antagonistic Strains Against Fusarium solani [J]. Biotechnology Bulletin, 2022, 38(2): 57-66. |
[13] | YUE Rong-sheng, CHENG Xing-ru, LI Jun, TANG Qiao-ling, KANG Yu-li, WANG You-hua. Global Patent Analysis and Technical Prospect for Glyphosate-resistant Genes [J]. Biotechnology Bulletin, 2022, 38(12): 324-333. |
[14] | SUN Zhong-juan, LIU Qian-qian, GUO Yu-qian, WANG Guang-hui, WANG Chen-fang. Establishment of Analog-sensitive Protein Kinase Research System in Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2022, 38(11): 49-57. |
[15] | LIU Chuan-he, HE Han, HE Xiu-gu, LAI Qiu-qin, LIU Kai, SHAO Xue-hua, LAI Duo, KUANG Shi-zi, XIAO Wei-qiang. Unveiling the Mechanisms of Pineapple Responding to Anti-chilling by Gauze Covering in Winter via Transcriptome and Metabolome Profiling [J]. Biotechnology Bulletin, 2022, 38(11): 58-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||