Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (1): 39-48.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0457
Previous Articles Next Articles
YIN Hao1,2(
), YOU Liu-chao1,2, HAN Rui1,2, GAO Peng-cheng1,2, FU Lei1,2(
), CHU Yue-feng1,2(
)
Received:2024-05-16
Online:2025-01-26
Published:2025-01-22
Contact:
FU Lei, CHU Yue-feng
E-mail:qubaobaozz@163.com;fulei@caas.cn;chuyuefeng@caas.cn
YIN Hao, YOU Liu-chao, HAN Rui, GAO Peng-cheng, FU Lei, CHU Yue-feng. Mechanisms and Application Research Progress of Bacterial Genomic Homologous Recombination Mediated by Single-stranded DNA Annealing Protein[J]. Biotechnology Bulletin, 2025, 41(1): 39-48.
Fig. 1 Model of RecA-mediated recombination of ssDNA and the strand annealing model of SSAP RecA possesses ssDNA-binding activity, SSAP has ssDNA annealing activity, and Exo has 5'-3' exonuclease activity targeting dsDNA. The homologous recombination process mediated by RecA is primarily involved in strand invasion, while the homologous recombination process mediated by SSAP primarily in strand annealing. a: RecA binds to ssDNA to form a RecA-DNA complex, which carries the ssDNA to invade the homologous sequence in the genome, forming a D-loop structure, thereby completing the recombination process. b: SSAP can directly bind to ssDNA, annealing it to the replication fork in the form of Okazaki fragments. dsDNA is processed into ssDNA by Exo and then completes recombination in the same manner
Fig. 2 Schematic diagram of the recombination process mediated by SSAP SSAP possesses ssDNA annealing activity, while Exo exhibits a 5'-3' exonuclease activity targeted at dsDNA. a: SSAP mediates the annealing of ssDNA, annealing it to the lagging strand in the form of Okazaki fragments. b: dsDNA is processed by Exo into either a completely degraded single strand of ssDNA or a recombination intermediate exposing 3' overhangs at both ends. c: The generally accepted model of SSAP-mediated ssDNA recombination strategy at the replication fork. d: A cooperative working model where Exo degrades one strand of the dsDNA while the other strand is simultaneously annealed by SSAP into the replication fork
| [1] |
Court DL, Sawitzke JA, Thomason LC. Genetic engineering using homologous recombination[J]. Annu Rev Genet, 2002, 36: 361-388.
pmid: 12429697 |
| [2] | Wang HH, Isaacs FJ, Carr PA, et al. Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature, 2009, 460(7257): 894-898. |
| [3] |
Cox MM. Historical overview: searching for replication help in all of the rec places[J]. Proc Natl Acad Sci USA, 2001, 98(15): 8173-8180.
doi: 10.1073/pnas.131004998 pmid: 11459950 |
| [4] |
Sonoda E, Takata M, Yamashita YM, et al. Homologous DNA recombination in vertebrate cells[J]. Proc Natl Acad Sci USA, 2001, 98(15): 8388-8394.
pmid: 11459980 |
| [5] | West SC. Molecular views of recombination proteins and their control[J]. Nat Rev Mol Cell Biol, 2003, 4(6): 435-445. |
| [6] |
Hochegger H, Sonoda E, Takeda S. Post-replication repair in DT40 cells: translesion polymerases versus recombinases[J]. Bioessays, 2004, 26(2): 151-158.
pmid: 14745833 |
| [7] |
Seitz EM, Kowalczykowski SC. The DNA binding and pairing preferences of the archaeal RadA protein demonstrate a universal characteristic of DNA strand exchange proteins[J]. Mol Microbiol, 2000, 37(3): 555-560.
pmid: 10931349 |
| [8] |
Hsieh P, Camerini-Otero CS, Camerini-Otero RD. The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA[J]. Proc Natl Acad Sci USA, 1992, 89(14): 6492-6496.
pmid: 1631148 |
| [9] |
Egelman E. A ubiquitous structural core[J]. Trends Biochem Sci, 2000, 25(4): 183-184.
pmid: 10754551 |
| [10] |
Kowalczykowski SC. Initiation of genetic recombination and recombination-dependent replication[J]. Trends Biochem Sci, 2000, 25(4): 156-165.
pmid: 10754547 |
| [11] | Wyman C, Ristic D, Kanaar R. Homologous recombination-mediated double-strand break repair[J]. DNA Repair, 2004, 3(8/9): 827-833. |
| [12] |
Rocha EPC, Cornet E, Michel B. Comparative and evolutionary analysis of the bacterial homologous recombination systems[J]. PLoS Genet, 2005, 1(2): e15.
doi: 10.1371/journal.pgen.0010015 pmid: 16132081 |
| [13] |
Rao BJ, Chiu SK, Bazemore LR, et al. How specific is the first recognition step of homologous recombination?[J]. Trends Biochem Sci, 1995, 20(3): 109-113.
pmid: 7709428 |
| [14] |
Malkov VA, Camerini-Otero RD. Dissociation kinetics of RecA protein-three-stranded DNA complexes reveals a low fidelity of RecA-assisted recognition of homology[J]. J Mol Biol, 1998, 278(2): 317-330.
pmid: 9571054 |
| [15] |
Malkov VA, Sastry L, Camerini-Otero RD. RecA protein assisted selection reveals a low fidelity of recognition of homology in a duplex DNA by an oligonucleotide[J]. J Mol Biol, 1997, 271(2): 168-177.
pmid: 9268650 |
| [16] |
Morel P, Stasiak A, Ehrlich SD, et al. Effect of length and location of heterologous sequences on RecA-mediated strand exchange[J]. J Biol Chem, 1994, 269(31): 19830-19835.
pmid: 8051065 |
| [17] |
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proc Natl Acad Sci USA, 2000, 97(12): 6640-6645.
doi: 10.1073/pnas.120163297 pmid: 10829079 |
| [18] | Lee DJ, Bingle LEH, Heurlier K, et al. Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains[J]. BMC Microbiol, 2009, 9: 252. |
| [19] |
Wilson JH. Pointing fingers at the limiting step in gene targeting[J]. Nat Biotechnol, 2003, 21(7): 759-760.
pmid: 12833096 |
| [20] |
Murphy KC. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli[J]. J Bacteriol, 1998, 180(8): 2063-2071.
pmid: 9555887 |
| [21] |
Zhang Y, Buchholz F, Muyrers JP, et al. A new logic for DNA engineering using recombination in Escherichia coli[J]. Nat Genet, 1998, 20(2): 123-128.
pmid: 9771703 |
| [22] |
Iyer LM, Koonin EV, Aravind L. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52[J]. BMC Genomics, 2002, 3: 8.
pmid: 11914131 |
| [23] |
Sawitzke JA, Thomason LC, Costantino N, et al. Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond[J]. Methods Enzymol, 2007, 421: 171-199.
pmid: 17352923 |
| [24] |
Little JW. An exonuclease induced by bacteriophage lambda. II. Nature of the enzymatic reaction[J]. J Biol Chem, 1967, 242(4): 679-686.
pmid: 6017737 |
| [25] |
Kmiec E, Holloman WK. Beta protein of bacteriophage lambda promotes renaturation of DNA[J]. J Biol Chem, 1981, 256(24): 12636-12639.
pmid: 6273399 |
| [26] |
Kolodner R, Hall SD, Luisi-DeLuca C. Homologous pairing proteins encoded by the Escherichia coli recE and recT genes[J]. Mol Microbiol, 1994, 11(1): 23-30.
pmid: 8145642 |
| [27] |
Murphy KC. Lambda Gam protein inhibits the helicase and Chi-stimulated recombination activities of Escherichia coli RecBCD enzyme[J]. J Bacteriol, 1991, 173(18): 5808-5821.
pmid: 1653221 |
| [28] |
Marsić N, Roje S, Stojiljković I, et al. In vivo studies on the interaction of RecBCD enzyme and lambda Gam protein[J]. J Bacteriol, 1993, 175(15): 4738-4743.
pmid: 8335632 |
| [29] |
Thaler DS, Stahl MM, Stahl FW. Double-chain-cut sites are recombination hotspots in the Red pathway of phage lambda[J]. J Mol Biol, 1987, 195(1): 75-87.
pmid: 2958632 |
| [30] |
Yu D, Ellis HM, Lee EC, et al. An efficient recombination system for chromosome engineering in Escherichia coli[J]. Proc Natl Acad Sci USA, 2000, 97(11): 5978-5983.
doi: 10.1073/pnas.100127597 pmid: 10811905 |
| [31] |
Stahl MM, Thomason L, Poteete AR, et al. Annealing vs. invasion in phage lambda recombination[J]. Genetics, 1997, 147(3): 961-977.
doi: 10.1093/genetics/147.3.961 pmid: 9383045 |
| [32] | Schumacher AJ, Mohni KN, Kan YN, et al. The HSV-1 exonuclease, UL12, stimulates recombination by a single strand annealing mechanism[J]. PLoS Pathog, 2012, 8(8): e1002862. |
| [33] |
Kowalczykowski SC, Eggleston AK. Homologous pairing and DNA strand-exchange proteins[J]. Annu Rev Biochem, 1994, 63: 991-1043.
pmid: 7979259 |
| [34] | Roca AI, Cox MM. RecA protein: structure, function, and role in recombinational DNA repair[J]. Prog Nucleic Acid Res Mol Biol, 1997, 56: 129-223. |
| [35] |
Muniyappa K, Radding CM. The homologous recombination system of phage lambda. Pairing activities of beta protein[J]. J Biol Chem, 1986, 261(16): 7472-7478.
pmid: 2940241 |
| [36] |
Erler A, Wegmann S, Elie-Caille C, et al. Conformational adaptability of Redbeta during DNA annealing and implications for its structural relationship with Rad52[J]. J Mol Biol, 2009, 391(3): 586-598.
doi: 10.1016/j.jmb.2009.06.030 pmid: 19527729 |
| [37] | Matsubara K, Malay AD, Curtis FA, et al. Structural and functional characterization of the Redβ recombinase from bacteriophage Λ[J]. PLoS One, 2013, 8(11): e78869. |
| [38] |
Passy SI, Yu X, Li Z, et al. Rings and filaments of beta protein from bacteriophage lambda suggest a superfamily of recombination proteins[J]. Proc Natl Acad Sci USA, 1999, 96(8): 4279-4284.
doi: 10.1073/pnas.96.8.4279 pmid: 10200253 |
| [39] |
Hall SD, Kane MF, Kolodner RD. Identification and characterization of the Escherichia coli RecT protein, a protein encoded by the recE region that promotes renaturation of homologous single-stranded DNA[J]. J Bacteriol, 1993, 175(1): 277-287.
pmid: 8416902 |
| [40] |
Thresher RJ, Makhov AM, Hall SD, et al. Electron microscopic visualization of RecT protein and its complexes with DNA[J]. J Mol Biol, 1995, 254(3): 364-371.
pmid: 7490755 |
| [41] |
Hall SD, Kolodner RD. Homologous pairing and strand exchange promoted by the Escherichia coli RecT protein[J]. Proc Natl Acad Sci USA, 1994, 91(8): 3205-3209.
pmid: 8159725 |
| [42] |
Karakousis G, Ye N, Li Z, et al. The beta protein of phage lambda binds preferentially to an intermediate in DNA renaturation[J]. J Mol Biol, 1998, 276(4): 721-731.
pmid: 9500924 |
| [43] |
Mythili E, Kumar KA, Muniyappa K. Characterization of the DNA-binding domain of beta protein, a component of phage lambda red-pathway, by UV catalyzed cross-linking[J]. Gene, 1996, 182(1-2): 81-87.
pmid: 8982071 |
| [44] |
Joseph JW, Kolodner R. Exonuclease VIII of Escherichia coli. I. Purification and physical properties[J]. J Biol Chem, 1983, 258(17): 10411-10417.
pmid: 6350289 |
| [45] |
Kovall R, Matthews BW. Toroidal structure of lambda-exonuclease[J]. Science, 1997, 277(5333): 1824-1827.
pmid: 9295273 |
| [46] | Zhang JJ, Xing X, Herr AB, et al. Crystal structure of E. coli RecE protein reveals a toroidal tetramer for processing double-stranded DNA breaks[J]. Structure, 2009, 17(5): 690-702. |
| [47] | Muyrers JP, Zhang Y, Buchholz F, et al. RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners[J]. Genes Dev, 2000, 14(15): 1971-1982. |
| [48] |
Rajagopala SV, Casjens S, Uetz P. The protein interaction map of bacteriophage lambda[J]. BMC Microbiol, 2011, 11: 213.
doi: 10.1186/1471-2180-11-213 pmid: 21943085 |
| [49] |
Ellis HM, Yu D, DiTizio T, et al. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides[J]. Proc Natl Acad Sci USA, 2001, 98(12): 6742-6746.
doi: 10.1073/pnas.121164898 pmid: 11381128 |
| [50] |
Costantino N, Court DL. Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants[J]. Proc Natl Acad Sci USA, 2003, 100(26): 15748-15753.
pmid: 14673109 |
| [51] |
Huen MSY, Li XT, Lu LY, et al. The involvement of replication in single stranded oligonucleotide-mediated gene repair[J]. Nucleic Acids Res, 2006, 34(21): 6183-6194.
doi: 10.1093/nar/gkl852 pmid: 17088285 |
| [52] |
Lim SI, Min BE, Jung GY. Lagging strand-biased initiation of red recombination by linear double-stranded DNAs[J]. J Mol Biol, 2008, 384(5): 1098-1105.
doi: 10.1016/j.jmb.2008.10.047 pmid: 18983848 |
| [53] |
Szczepańska AK. Bacteriophage-encoded functions engaged in initiation of homologous recombination events[J]. Crit Rev Microbiol, 2009, 35(3): 197-220.
doi: 10.1080/10408410902983129 pmid: 19563302 |
| [54] |
Sharan SK, Thomason LC, Kuznetsov SG, et al. Recombineering: a homologous recombination-based method of genetic engineering[J]. Nat Protoc, 2009, 4(2): 206-223.
doi: 10.1038/nprot.2008.227 pmid: 19180090 |
| [55] |
Poteete AR. Involvement of DNA replication in phage lambda Red-mediated homologous recombination[J]. Mol Microbiol, 2008, 68(1): 66-74.
doi: 10.1111/j.1365-2958.2008.06133.x pmid: 18333884 |
| [56] |
Yu DG, Sawitzke JA, Ellis H, et al. Recombineering with overlapping single-stranded DNA oligonucleotides: testing a recombination intermediate[J]. Proc Natl Acad Sci USA, 2003, 100(12): 7207-7212.
pmid: 12771385 |
| [57] |
Maresca M, Erler A, Fu J, et al. Single-stranded heteroduplex intermediates in lambda red homologous recombination[J]. BMC Mol Biol, 2010, 11: 54.
doi: 10.1186/1471-2199-11-54 pmid: 20670401 |
| [58] |
Mosberg JA, Lajoie MJ, Church GM. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate[J]. Genetics, 2010, 186(3): 791-799.
doi: 10.1534/genetics.110.120782 pmid: 20813883 |
| [59] | Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda[J]. Microbiol Mol Biol Rev, 1999, 63(4): 751-813, table of contents. |
| [60] |
Kolisnychenko V, Plunkett G 3rd, Herring CD, et al. Engineering a reduced Escherichia coli genome[J]. Genome Res, 2002, 12(4): 640-647.
pmid: 11932248 |
| [61] | Yu BJ, Kang KH, Lee JH, et al. Rapid and efficient construction of markerless deletions in the Escherichia coli genome[J]. Nucleic Acids Res, 2008, 36(14): e84. |
| [62] | Herring CD, Glasner JD, Blattner FR. Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli[J]. Gene, 2003, 311: 153-163. |
| [63] | Derbise A, Lesic B, Dacheux D, et al. A rapid and simple method for inactivating chromosomal genes in Yersinia[J]. FEMS Immunol Med Microbiol, 2003, 38(2): 113-116. |
| [64] |
Husseiny MI, Hensel M. Rapid method for the construction of Salmonella enterica Serovar Typhimurium vaccine carrier strains[J]. Infect Immun, 2005, 73(3): 1598-1605.
pmid: 15731059 |
| [65] | Beloin C, Dorman CJ. An extended role for the nucleoid structuring protein H-NS in the virulence gene regulatory cascade of Shigella flexneri[J]. Mol Microbiol, 2003, 47(3): 825-838. |
| [66] | Rossi MS, Paquelin A, Ghigo JM, et al. Haemophore-mediated signal transduction across the bacterial cell envelope in Serratia marcescens: the inducer and the transported substrate are different molecules[J]. Mol Microbiol, 2003, 48(6): 1467-1480. |
| [67] | Lesic B, Rahme LG. Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa[J]. BMC Mol Biol, 2008, 9: 20. |
| [68] |
Yamamoto S, Izumiya H, Morita M, et al. Application of lambda Red recombination system to Vibrio cholerae genetics: simple methods for inactivation and modification of chromosomal genes[J]. Gene, 2009, 438(1-2): 57-64.
doi: 10.1016/j.gene.2009.02.015 pmid: 19268696 |
| [69] |
Loessner MJ, Inman RB, Lauer P, et al. Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution[J]. Mol Microbiol, 2000, 35(2): 324-340.
pmid: 10652093 |
| [70] |
van Kessel JC, Marinelli LJ, Hatfull GF. Recombineering mycobacteria and their phages[J]. Nat Rev Microbiol, 2008, 6(11): 851-857.
doi: 10.1038/nrmicro2014 pmid: 18923412 |
| [71] | Sun ZP, Deng AH, Hu T, et al. A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35[J]. Appl Microbiol Biotechnol, 2015, 99(12): 5151-5162. |
| [72] | van Pijkeren JP, Britton RA. High efficiency recombineering in lactic acid bacteria[J]. Nucleic Acids Res, 2012, 40(10): e76. |
| [73] | Dong HJ, Tao WW, Gong FY, et al. A functional recT gene for recombineering of Clostridium[J]. J Biotechnol, 2014, 173: 65-67. |
| [74] |
Caldwell BJ, Zakharova E, Filsinger GT, et al. Crystal structure of the Redβ C-terminal domain in complex with λ Exonuclease reveals an unexpected homology with λ Orf and an interaction with Escherichia coli single stranded DNA binding protein[J]. Nucleic Acids Res, 2019, 47(4): 1950-1963.
doi: 10.1093/nar/gky1309 pmid: 30624736 |
| [75] | Yin J, Zheng WT, Gao YS, et al. Single-stranded DNA-binding protein and exogenous RecBCD inhibitors enhance phage-derived homologous recombination in Pseudomonas[J]. iScience, 2019, 14: 1-14. |
| [76] |
Piano AL, Martínez-Jiménez MI, Zecchi L, et al. Recombination-dependent concatemeric viral DNA replication[J]. Virus Res, 2011, 160(1-2): 1-14.
doi: 10.1016/j.virusres.2011.06.009 pmid: 21708194 |
| [77] |
Filsinger GT, Wannier TM, Pedersen FB, et al. Characterizing the portability of phage-encoded homologous recombination proteins[J]. Nat Chem Biol, 2021, 17(4): 394-402.
doi: 10.1038/s41589-020-00710-5 pmid: 33462496 |
| [78] | Bartra SS, Styer KL, O'Bryant DM, et al. Resistance of Yersinia pestis to complement-dependent killing is mediated by the Ail outer membrane protein[J]. Infect Immun, 2008, 76(2): 612-622. |
| [79] | Tahir H, Basit A, Tariq H, et al. Coupling CRISPR/Cas9 and lambda red recombineering system for genome editing of Salmonella gallinarum and the effect of ssaU knock-out mutant on the virulence of bacteria[J]. Biomedicines, 2022, 10(12): 3028. |
| [80] | Juhas M, Ajioka JW. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome[J]. J Microbiol Methods, 2016, 125: 1-7. |
| [81] | Li XT, Costantino N, Lu LY, et al. Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli[J]. Nucleic Acids Res, 2003, 31(22): 6674-6687. |
| [82] |
Wang HH, Church GM. Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering[J]. Methods Enzymol, 2011, 498: 409-426.
doi: 10.1016/B978-0-12-385120-8.00018-8 pmid: 21601688 |
| [83] | Bonde MT, Klausen MS, Anderson MV, et al. MODEST: a web-based design tool for oligonucleotide-mediated genome engineering and recombineering[J]. Nucleic Acids Res, 2014, 42(Web Server issue): W408-W415. |
| [84] | Wen S, Yang JG, Tan TW. Full-length single-stranded PCR product mediated chromosomal integration in intact Bacillus subtilis[J]. J Microbiol Methods, 2013, 92(3): 273-277. |
| [85] |
Sawitzke JA, Costantino N, Li XT, et al. Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering[J]. J Mol Biol, 2011, 407(1): 45-59.
doi: 10.1016/j.jmb.2011.01.030 pmid: 21256136 |
| [86] | Mosberg JA, Gregg CJ, Lajoie MJ, et al. Improving lambda red genome engineering in Escherichia coli via rational removal of endogenous nucleases[J]. PLoS One, 2012, 7(9): e44638. |
| [87] |
Piñero-Lambea C, Garcia-Ramallo E, Martinez S, et al. Mycoplasma pneumoniae genome editing based on oligo recombineering and Cas9-mediated counterselection[J]. ACS Synth Biol, 2020, 9(7): 1693-1704.
doi: 10.1021/acssynbio.0c00022 pmid: 32502342 |
| [88] |
Ipoutcha T, Gourgues G, Lartigue C, et al. Genome engineering in Mycoplasma gallisepticum using exogenous recombination systems[J]. ACS Synth Biol, 2022, 11(3): 1060-1067.
doi: 10.1021/acssynbio.1c00541 pmid: 35167277 |
| [89] |
Piñero-Lambea C, Garcia-Ramallo E, Miravet-Verde S, et al. SURE editing: combining oligo-recombineering and programmable insertion/deletion of selection markers to efficiently edit the Mycoplasma pneumoniae genome[J]. Nucleic Acids Res, 2022, 50(22): e127.
doi: 10.1093/nar/gkac836 pmid: 36215032 |
| [90] |
Muyrers JP, Zhang Y, Testa G, et al. Rapid modification of bacterial artificial chromosomes by ET-recombination[J]. Nucleic Acids Res, 1999, 27(6): 1555-1557.
pmid: 10037821 |
| [91] | Yin J, Zhu HB, Xia LQ, et al. A new recombineering system for Photorhabdus and Xenorhabdus[J]. Nucleic Acids Res, 2015, 43(6): e36. |
| [1] | LIU Ke-han, YANG Sheng-hui, HUANG Qiao-yun, CUI Wen-jing. Isolation and Application of Soybean Rhizobia and Symbiosis-promoting Rhizobacteria from Heilongjiang Province [J]. Biotechnology Bulletin, 2025, 41(1): 252-262. |
| [2] | ZHANG Ting, WAN Yu-xin, XU Wei-hui, WANG Zhi-gang, CHEN Wen-jing, HU Yun-long. Growth-promoting Effects of a Rhizosphere Growth-promoting Bacterium Leclercia adecarboxylata LN01 in Maize Plants and Its Whole-genome Analysis [J]. Biotechnology Bulletin, 2025, 41(1): 263-275. |
| [3] | MU Xue-nan, WU Tong, ZHENG Zi-wei, ZHANG Yue, WANG Zhi-gang, XU Wei-hui. Screening, Identification and Biocontrol Potential Analysis of an Antagonistic Strain against Ralstonia solanacearum [J]. Biotechnology Bulletin, 2025, 41(1): 276-286. |
| [4] | RAO Jun, ZHAO Chen, LI Duan-hua, LIAO Hao, HUANG Jia-yu, WANG Lu. Application of Auto-induction Strategy in Ergothioneine Biosynthesis [J]. Biotechnology Bulletin, 2025, 41(1): 333-346. |
| [5] | MA Bo-tao, WU Guo-qiang, WEI Ming. Roles of bZIP Transcription Factor in the Response to Stresses, and Growth and Development in Plants [J]. Biotechnology Bulletin, 2024, 40(9): 148-160. |
| [6] | LIU Lu, ZHU Zhe-yuan, LI Ying-xi, WANG Jie, PENG Di. Research Progress in Microbial Herbicides [J]. Biotechnology Bulletin, 2024, 40(9): 161-171. |
| [7] | WEN Shao-fu, JIANG Run-hai, ZHU Cheng-qiang, ZHANG Mei, YU Xiao-qin, YANG Jie-hui, YANG Xiao-rong, HOU Xiu-li. Effects of Phosphate-solubilizing Bacteria on the Rhizosphere Soil Properties and Microbial Community Structure of Maize in Lead-contaminated Soil [J]. Biotechnology Bulletin, 2024, 40(9): 225-237. |
| [8] | HAN Zhong-rao, HUO Yi-xin, GUO Shu-yuan. Mechanism and Industrial Application of Bacillus Tolerance to Stress Conditions [J]. Biotechnology Bulletin, 2024, 40(8): 24-38. |
| [9] | LI Qing-mao, PENG Cong-gui, QI Xiao-han, LIU Xing-lei, LI Zhen-yuan, LI Qin-yan, HUANG Li-yu. Screening and Identification of Excellent Strains of Endophytic Bacteria Promoting Rice Iron Absorption from Wild Rice [J]. Biotechnology Bulletin, 2024, 40(8): 255-263. |
| [10] | ZHANG Zhi-mei, ZHANG Yan-meng, XIE Dong-ming, YANG Xiu-yun, WANG Lang, ZUO Zi-han, WU Zhi-guo. Enrichment of 1, 2-dichloroethane Degrading Bacterial Consortium, and Isolation and Identification of Ancylobacter sp. BL0 of a Key Degrading Bacterial Strain [J]. Biotechnology Bulletin, 2024, 40(8): 288-298. |
| [11] | LIU Wen-hao, WU Liu-ji, XU Fang. Regulatory Mechanisms of Small Peptides in Plant Meristem Development and Its Research Advances in Crop Improvement [J]. Biotechnology Bulletin, 2024, 40(7): 1-18. |
| [12] | WANG Fang, YU Lu, QI Ze-zheng, ZHOU Chang-jun, YU Ji-dong. Screening and Biocontrol Effect of Antagonistic Bacteria against Soybean Root Rot [J]. Biotechnology Bulletin, 2024, 40(7): 216-225. |
| [13] | LIU Chuan-he, HE Han, SHAO Xue-hua, HE Xiu-gu. Analysis of Differential Metabolites and Bacterial Community Structure in the Soils of a Pineapple Orchard under Different Mulching Treatments [J]. Biotechnology Bulletin, 2024, 40(7): 247-258. |
| [14] | LONG Jing, CHEN Jing-min, LIU Xiao, ZHANG Yi-fan, ZHOU Li-bin, DU Yan. Repair Mechanisms of DNA Double-strand Breaks and Their Roles in Heavy Ion Mutagenesis and Gene Editing in Plants [J]. Biotechnology Bulletin, 2024, 40(7): 55-67. |
| [15] | ZHANG Zhen-yu, JIN Li-wu, WANG Jing-zun, TIAN Ling, QIAO Zi-lin, YANG Di, AYIMUGULI Abudureyimu. Research Progress in the Immortalization of Animal Cells [J]. Biotechnology Bulletin, 2024, 40(7): 78-89. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||