Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (1): 263-275.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0487
Previous Articles Next Articles
ZHANG Ting1,2,3(
), WAN Yu-xin1,2,3, XU Wei-hui1,2,3, WANG Zhi-gang1,2,3(
), CHEN Wen-jing1,2,3, HU Yun-long1,2,3
Received:2024-05-25
Online:2025-01-26
Published:2025-01-22
Contact:
WANG Zhi-gang
E-mail:2077133351@qq.com;wangzhigang@qqhru.edu.cn
ZHANG Ting, WAN Yu-xin, XU Wei-hui, WANG Zhi-gang, CHEN Wen-jing, HU Yun-long. Growth-promoting Effects of a Rhizosphere Growth-promoting Bacterium Leclercia adecarboxylata LN01 in Maize Plants and Its Whole-genome Analysis[J]. Biotechnology Bulletin, 2025, 41(1): 263-275.
| 培养基Medium | 组分Composition/(g·L-1) |
|---|---|
| NBRIP 培养基[ National Botanical Research Institute's phosphate medium | 葡萄糖10.0,Ca3 (PO4)2 5.0,MgCl2 ·6H2O 0.2, (NH4)2SO4 0.1,琼脂20.0,液体培养基不加琼脂 |
| 亚历山大罗夫培养基[ Alexandrov medium | 蔗糖5.0,Na2HPO4 2.0,MgSO4 0.5,CaCO3 0.1,FeCl3 0.005,钾长石1.0,溴百里酚蓝(100 mg/L)20 mL,琼脂20.0,pH 7.0 |
| 解钾液体发酵培养基[ Potassium bacteria medium | 蔗糖10.0,Na2HPO4 1.0,MgSO4 1.0,CaCO3 0.1,FeCl3 0.005,钾长石10.0,(NH4)2SO4 0.5 |
| 阿须贝无氮培养基[ Ashby’S medium | KH2PO4 0.2,MgSO4 0.2,NaCl 0.2,CaCO3 5.0,甘露醇10.0,CaSO4 0.1,琼脂20.0,pH 7.0,液体培养基不加琼脂 |
| 牛肉膏蛋白胨培养基[ Nutrient broth medium | 蛋白胨10.0,NaCl 5.0,牛肉膏3.0,琼脂20.0,pH 7.0,液体培养基不加琼脂 |
| CAS培养基Chrome azurol sulfonate medium | CAS培养基10.87,琼脂20.0,pH 7.0 |
Table 1 Test medium
| 培养基Medium | 组分Composition/(g·L-1) |
|---|---|
| NBRIP 培养基[ National Botanical Research Institute's phosphate medium | 葡萄糖10.0,Ca3 (PO4)2 5.0,MgCl2 ·6H2O 0.2, (NH4)2SO4 0.1,琼脂20.0,液体培养基不加琼脂 |
| 亚历山大罗夫培养基[ Alexandrov medium | 蔗糖5.0,Na2HPO4 2.0,MgSO4 0.5,CaCO3 0.1,FeCl3 0.005,钾长石1.0,溴百里酚蓝(100 mg/L)20 mL,琼脂20.0,pH 7.0 |
| 解钾液体发酵培养基[ Potassium bacteria medium | 蔗糖10.0,Na2HPO4 1.0,MgSO4 1.0,CaCO3 0.1,FeCl3 0.005,钾长石10.0,(NH4)2SO4 0.5 |
| 阿须贝无氮培养基[ Ashby’S medium | KH2PO4 0.2,MgSO4 0.2,NaCl 0.2,CaCO3 5.0,甘露醇10.0,CaSO4 0.1,琼脂20.0,pH 7.0,液体培养基不加琼脂 |
| 牛肉膏蛋白胨培养基[ Nutrient broth medium | 蛋白胨10.0,NaCl 5.0,牛肉膏3.0,琼脂20.0,pH 7.0,液体培养基不加琼脂 |
| CAS培养基Chrome azurol sulfonate medium | CAS培养基10.87,琼脂20.0,pH 7.0 |
Fig. 2 Evaluation of the growth-promoting effect and comprehensive ability of strain LN01 on maize seedlings A: 14-day-old maize seedlings under different treatments; B: biomass; C: plant height; D: thick stem; E: soil total nitrogen; F: soil available phosphorus; G: soil available potassium. The different lowercase letters indicate significant differences among treatments(P<0.05). The same below
| 菌株LN01特征 Characteristics of LN01 | 数值 Value |
|---|---|
| Genome size/bp | 5 379 004 |
| GC content/% | 55.1 |
| Chromosome | 1 |
| Plasmid | 6 |
| tRNA | 87 |
| rRNA(5S, 16S, 23S) | 25 |
| Protein-coding genes(CDS) | 5 004 |
| Genomic islands | 14 |
| Secondary metabolite gene clusters | 4 |
| Genes assigned to NR | 4 873 |
| Genes assigned to COGs | 4 085 |
| Genes assigned to GO | 2 793 |
| Genes assigned to KEGG | 3 285 |
| Genes assigned to Pfam | 4 400 |
| Genes assigned to Swiss-Prot | 4 219 |
Table 2 Genome characteristics of strain LN01
| 菌株LN01特征 Characteristics of LN01 | 数值 Value |
|---|---|
| Genome size/bp | 5 379 004 |
| GC content/% | 55.1 |
| Chromosome | 1 |
| Plasmid | 6 |
| tRNA | 87 |
| rRNA(5S, 16S, 23S) | 25 |
| Protein-coding genes(CDS) | 5 004 |
| Genomic islands | 14 |
| Secondary metabolite gene clusters | 4 |
| Genes assigned to NR | 4 873 |
| Genes assigned to COGs | 4 085 |
| Genes assigned to GO | 2 793 |
| Genes assigned to KEGG | 3 285 |
| Genes assigned to Pfam | 4 400 |
| Genes assigned to Swiss-Prot | 4 219 |
| 促生特性 PGP traits | 基因 Gene |
|---|---|
| IAA | trpA trpB trpS trpCF trpR trpGD ipdC amiE patB |
| Potassium solubilization and uptake | kdpA kdpB kdpC kefB kefC kefF kefG trkA trkH kup |
| Siderophore | tonB exbB fhuB fhuC fhuD fhuE fhuF efeO efeB efeU fepD fepG fepC ftsB afuB afuC afuA |
| Nitrogen generation | glnG nirB nirC nirD nasA nrtA nrtB nrtC nrtB nasA nirA glnA gltB gltD |
| Phosphate solubilization and uptake | pstS pstC pstA pstB phnA phnC phnD phnE phnF phnG phnH phnI phnJ phnK phnL phnN phnP phoA phoB phoE phoR ugpA ugpB ugpC ugpE |
Table 3 Predicted genes associated with PGP in LN01 genome
| 促生特性 PGP traits | 基因 Gene |
|---|---|
| IAA | trpA trpB trpS trpCF trpR trpGD ipdC amiE patB |
| Potassium solubilization and uptake | kdpA kdpB kdpC kefB kefC kefF kefG trkA trkH kup |
| Siderophore | tonB exbB fhuB fhuC fhuD fhuE fhuF efeO efeB efeU fepD fepG fepC ftsB afuB afuC afuA |
| Nitrogen generation | glnG nirB nirC nirD nasA nrtA nrtB nrtC nrtB nasA nirA glnA gltB gltD |
| Phosphate solubilization and uptake | pstS pstC pstA pstB phnA phnC phnD phnE phnF phnG phnH phnI phnJ phnK phnL phnN phnP phoA phoB phoE phoR ugpA ugpB ugpC ugpE |
Fig. 7 Quantitative and qualitative determination of the growth-promoting function of strain LN01 A: Qualitative results of iron production carrier and nitrogen fixation capacity.B: Qualitative results of phosphorus and potassium solubilization. C: Total nitrogen content in fermentation broth of the strains. D: Soluble potassium content. * denotes significant difference(P<0.05)compared with the control, ** P<0.01, *** P<0.001, and ****denotes P<0.000 1
| 菌株 Strain | 定性结果 Qualitative result | 吸光值 Optical density | 产率 Productive rate/(mg·L-1) |
|---|---|---|---|
| LN01 | IAA(+) | OD530nm =0.061 3 | 42.200 |
| 溶磷(+) | OD700nm =1.762 0 | 58.329 |
Table 4 Qualitative and quantitative detection of IAA secretion and phosphorus dissolution
| 菌株 Strain | 定性结果 Qualitative result | 吸光值 Optical density | 产率 Productive rate/(mg·L-1) |
|---|---|---|---|
| LN01 | IAA(+) | OD530nm =0.061 3 | 42.200 |
| 溶磷(+) | OD700nm =1.762 0 | 58.329 |
| [1] | 王冬梅. 玉米种植现状与新技术应用的效率分析[J]. 世界热带农业信息, 2023(4): 7-9. |
| Wang DM. Analysis on the present situation of maize planting and the efficiency of new technology application[J]. World Trop Agric Inf, 2023(4): 7-9. | |
| [2] | 中国农业科学院作物科学研究所. 中国农科院实施“增粮科技行动”[J]. 中国农业综合开发, 2022,(6): 39. |
| Institute of Crop Sciences, Chinese Academy of Agricultural Sciences. The Chinese Academy of Agricultural Sciences(CASA)implements the “Grain Enhancement Science and Technology Initiative”[J]. Agricultural Comprehensive Development in China, 2022,(6): 39. | |
| [3] | 勾宇春, 王宗抗, 张志鹏, 等. 植物根际促生菌作用机制研究进展[J]. 应用与环境生物学报, 2023, 29(2): 495-506. |
| Gou YC, Wang ZK, Zhang ZP, et al. Advance in role mechanisms of plant growth-promoting rhizobacteria[J]. Chin J Appl Environ Biol, 2023, 29(2): 495-506. | |
| [4] |
Kowalchuk GA, Stephen JR. Ammonia-oxidizing bacteria: a model for molecular microbial ecology[J]. Annu Rev Microbiol, 2001, 55: 485-529.
pmid: 11544365 |
| [5] | 周益帆, 白寅霜, 岳童, 等. 植物根际促生菌促生特性研究进展[J]. 微生物学通报, 2023, 50(2): 644-666. |
| Zhou YF, Bai YS, Yue T, et al. Research progress on the growth-promoting characteristics of plant growth-promoting rhizobacteria[J]. Microbiol China, 2023, 50(2): 644-666. | |
| [6] | Basu A, Prasad P, Das SN, et al. Plant growth promoting rhizobacteria(PGPR)as green bioinoculants: recent developments, constraints, and prospects[J]. Sustainability, 2021, 13(3): 1140. |
| [7] | Chen YH, Li SS, Liu N, et al. Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil[J]. Environ Sci Pollut Res Int, 2021, 28(18): 23036-23047. |
| [8] | Zhai ZG, Hu QL, Chen JR, et al. Effects of combined application of organic fertilizer and microbial agents on tobacco soil and tobacco agronomic traits[J]. IOP Conf Ser: Earth Environ Sci, 2020, 594(1): 012023. |
| [9] | Das PP, Singh KR, Nagpure G, et al. Plant-soil-microbes: a tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices[J]. Environ Res, 2022, 214(Pt 1): 113821. |
| [10] |
Galperin MY, Kristensen DM, Makarova KS, et al. Microbial genome analysis: the COG approach[J]. Brief Bioinform, 2019, 20(4): 1063-1070.
doi: 10.1093/bib/bbx117 pmid: 28968633 |
| [11] | 余世铭. 垦粘一号与垦粘二号玉米[J]. 作物品种资源, 1993(4): 21. |
| Yu SM. Kenzhan 1 and Kenzhan 2 corn[J]. China Seed Ind, 1993(4): 21. | |
| [12] |
Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J]. FEMS Microbiol Lett, 1999, 170(1): 265-270.
doi: 10.1111/j.1574-6968.1999.tb13383.x pmid: 9919677 |
| [13] | 李凤汀, 郝正然, 杨则瑗, 等. 硅酸盐细菌HM8841菌株解钾作用的研究[J]. 微生物学报, 1997, 37(1): 79-81. |
| Li FT, Hao ZR, Yang ZY, et al. Studies on the ability of silicate bacteria HM8841 strain dissolving potassium[J]. Acta Microbiol Sin, 1997, 37(1): 79-81. | |
| [14] | 王珣珏, 黄巧云, 蔡鹏, 等. 解钾菌解钾效率检测方法的比较[J]. 华中农业大学学报, 2016, 35(1): 81-85. |
| Wang XJ, Huang QY, Cai P, et al. Comparing different methods of detecting potassium solubilizing efficiency with potassium solubilizing bacteria[J]. J Huazhong Agric Univ, 2016, 35(1): 81-85. | |
| [15] | Ben Abdallah D, Frikha-Gargouri O, Tounsi S. Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a[J]. Biol Contr, 2018, 124: 61-67. |
| [16] | 沈萍, 陈向东. 微生物学实验(第4版)[M]. 北京: 高等教育出版社, 2007. |
| Shen P, Chen XD. Laboratory Microbiology[M]. 4th ed. Beijing: Higer Education Press, 2007. | |
| [17] | Niu B, Kolter R. Quantification of the composition dynamics of a maize root-associated simplified bacterial community and evaluation of its biological control effect[J]. Bio Protoc, 2018, 8(12): e2885. |
| [18] | 张韫. 土壤·水·植物理化分析教程[M]. 北京: 中国林业出版社, 2011. |
| Zhang Y. Course of soil, water and plant physical and chemical analysis[M]. Beijing: China Forestry Publishing House, 2011. | |
| [19] | 吴玥, 王秋颖, 关体坤, 等. 磷铁尾矿中高效解磷菌筛选、鉴定及解磷特性[J]. 北京农学院学报, 2022, 37(4): 6-12. |
| Wu Y, Wang QY, Guan TK, et al. Isolation, identification and phosphate solubilizing characteristics of a phosphate solubilizing bacterium from ferrophosphate tailings[J]. J Beijing Univ Agric, 2022, 37(4): 6-12. | |
| [20] | 中国科学院南京土壤研究所微生物室. 土壤微生物研究法[M]. 北京: 科学出版社, 1985. |
| Department of Microbiology, Nanjing Institute of Soil Science, Chinese Academy of Sciences. Soil microorganism research method[M]. Beijing: Science Press, 1985. | |
| [21] | Rajawat MVS, Singh S, Tyagi SP, et al. A modified plate assay for rapid screening of potassium-solubilizing bacteria[J]. Pedosphere, 2016, 26(5): 768-73. |
| [22] |
李福艳, 刘晓玉, 颜静婷, 等. 三株产吲哚乙酸根际促生芽孢杆菌的筛选鉴定及其促生作用[J]. 浙江农业学报, 2021, 33(5): 873-84.
doi: 10.3969/j.issn.1004-1524.2021.05.13 |
| Li FY, Liu XY, Yan JT, et al. Screening and identification of three indoleacetic acid-producing rhizosphere Bacillus and their growth-promoting effects[J]. Journal of Zhejiang Agricultural Sciences, 2021, 33(5): 873-84. | |
| [23] | 刘雪娇, 李红亚, 李术娜, 等. 贝莱斯芽孢杆菌3A3-15生防和促生机制[J]. 河北大学学报: 自然科学版, 2019, 39(3): 302-310. |
| Liu XJ, Li HY, Li SN, et al. Biocontrol and growth promotion mechanisms of Bacillus velezensis 3A3-15[J]. J Hebei Univ Nat Sci Ed, 2019, 39(3): 302-310. | |
| [24] | 王宝杰. 内蒙古草原葱属植物根际土壤功能菌筛选及其对燕麦的促生作用[D]. 呼和浩特: 内蒙古大学, 2021. |
| Wang BJ. Screening of functional bacteria in rhizosphere soil of Allium plants in Inner Mongolia grassland and its growth promotion effect on oats[D]. Hohhot: Inner Mongolia University, 2021. | |
| [25] | 王卫星, 周晓伦, 李忠玲, 等. CAS平板覆盖法检测氢氧化细菌铁载体[J]. 微生物学通报, 2014, 41(8): 1692-1697. |
| Wang WX, Zhou XL, Li ZL, et al. Detection of siderophore production from hydrogen-oxidizing bacteria with CAS overlay plate method[J]. Microbiol China, 2014, 41(8): 1692-1697. | |
| [26] |
Fitzpatrick CR, Salas-González I, Conway JM, et al. The plant microbiome: from ecology to reductionism and beyond[J]. Annu Rev Microbiol, 2020, 74: 81-100.
doi: 10.1146/annurev-micro-022620-014327 pmid: 32530732 |
| [27] | Sun XL, Xu ZH, Xie JY, et al. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions[J]. ISME J, 2022, 16(3): 774-787. |
| [28] |
Zhang XC, Dippold MA, Kuzyakov Y, et al. Spatial pattern of enzyme activities depends on root exudate composition[J]. Soil Biol Biochem, 2019, 133: 83-93.
doi: 10.1016/j.soilbio.2019.02.010 |
| [29] | Wang SS, Wang JB, Zhou YF, et al. Isolation, classification, and growth-promoting effects of Pantoea sp. YSD J2 from the aboveground leaves of Cyperus Esculentus L. var. sativus[J]. Curr Microbiol, 2022, 79(2): 66. |
| [30] | Ali S, Charles TC, Glick BR. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase[J]. Plant Physiol Biochem, 2014, 80: 160-167. |
| [31] | Yoon SH, Ha SM, Lim J, et al. A large-scale evaluation of algorithms to calculate average nucleotide identity[J]. Antonie Van Leeuwenhoek, 2017, 110(10): 1281-1286. |
| [32] | Li XX, Liu Q, Liu XM, et al. Using synthetic biology to increase nitrogenase activity[J]. Microb Cell Fact, 2016, 15: 43. |
| [33] |
Nordlund S, Högbom M. ADP-ribosylation, a mechanism regulating nitrogenase activity[J]. FEBS J, 2013, 280(15): 3484-3490.
doi: 10.1111/febs.12279 pmid: 23574616 |
| [34] | 张鹏, 王龙, 谢明杰. PstS和PstB调控无机磷酸盐转运和介导细菌耐药的机制[J]. 微生物学报, 2019, 59(8): 1429-1436. |
| Zhang P, Wang L, Xie MJ. Regulating inorganic phosphate transport and mediating bacterial resistance by PstS and PstB[J]. Acta Microbiol Sin, 2019, 59(8): 1429-1436. | |
| [35] | 盛下放, 黄为一. 硅酸盐细菌NBT菌株解钾机理初探[J]. 土壤学报, 2002, 39(6): 863-871. |
| Sheng XF, Huang WY. Mechanism of potassium release from feldspar affected by the strain nbt of silicate bacterium[J]. Acta Pedol Sin, 2002, 39(6): 863-871. | |
| [36] | Epstein W, Buurman E, McLaggan D, et al. Multiple mechanisms, roles and controls of K+ transport in Escherichia coli[J]. Biochem Soc Trans, 1993, 21(4): 1006-1010. |
| [37] | Garzón-Posse F, Quevedo-Acosta Y, Mahecha-Mahecha C, et al. Recent progress in the synthesis of naturally occurring siderophores[J]. Eur J Org Chem, 2019, 2019(48): 7747-7769. |
| [38] | Kang SM, Shahzad R, Khan MA, et al. Ameliorative effect of indole-3-acetic acid- and siderophore-producing Leclercia adecarboxylata MO1 on cucumber plants under zinc stress[J]. J Plant Interact, 2021, 16(1): 30-41. |
| [39] | Kumawat KC, Sharma P, Singh I, et al. Co-existence of Leclercia adecarboxylata(LSE-1)and Bradyrhizobium sp.(LSBR-3)in nodule niche for multifaceted effects and profitability in soybean production[J]. World J Microbiol Biotechnol, 2019, 35(11): 172. |
| [40] | Ashrafuzzaman M, Hossen FA, Razi Ismail UM, et al. Efficiency of plant growth-promoting rhizobacteria(PGPR)for the enhancement of rice growth[J]. Afr J Biotechnol, 2009, 8(7): 1247-1252. |
| [41] | Taghavi S, van der Lelie D, Hoffman A, et al. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638[J]. PLoS Genet, 2010, 6(5): e1000943. |
| [42] | Coulson TJD, Patten CL. Complete genome sequence of Enterobacter cloacae UW5, a rhizobacterium capable of high levels of indole-3-acetic acid production[J]. Genome Announc, 2015, 3(4): e00843-15. |
| [43] | Guo DJ, Singh RK, Singh P, et al. Complete genome sequence of Enterobacter roggenkampii ED5, a nitrogen fixing plant growth promoting endophytic bacterium with biocontrol and stress tolerance properties, isolated from sugarcane root[J]. Front Microbiol, 2020, 11: 580081. |
| [44] |
Ghazy N, El-Nahrawy S. Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant[J]. Arch Microbiol, 2021, 203(3): 1195-1209.
doi: 10.1007/s00203-020-02113-5 pmid: 33231747 |
| [45] | Liu RF, Zhang Y, Chen P, et al. Genomic and phenotypic analyses of Pseudomonas psychrotolerans PRS08-11306 reveal a turnerbactin biosynthesis gene cluster that contributes to nitrogen fixation[J]. J Biotechnol, 2017, 253: 10-13. |
| [46] | Han AW, Sandy M, Fishman B, et al. Turnerbactin, a novel triscatecholate siderophore from the shipworm endosymbiont Teredinibacter turnerae T7901[J]. PLoS One, 2013, 8(10): e76151. |
| [47] | Sedkova N, Tao L, Rouvière PE, et al. Diversity of carotenoid synt-hesis gene clusters from environmental Enterobacteriaceae strai-ns[J]. Appl Environ Microbiol, 2005, 71(12): 8141-8146. |
| [48] | Jones CV, Jarboe BG, Majer HM, et al. Escherichia coli nissle 1917 secondary metabolism: aryl polyene biosynthesis and phosphopantetheinyl transferase crosstalk[J]. Appl Microbiol Biotechnol, 2021, 105(20): 7785-7799. |
| [1] | DU Zhong-yang, YANG Ze, LIANG Meng-jing, LIU Yi-zhen, CUI Hong-li, SHI Da-ming, XUE Jin-ai, SUN Yan, ZHANG Chun-hui, JI Chun-li, LI Run-zhi. Effect of Nano-selenium(SeNPs)in Alleviating Lead Stress and Promoting Growth of Tobacco Seedlings [J]. Biotechnology Bulletin, 2024, 40(7): 183-196. |
| [2] | SUN Ya-nan, WANG Chun-xue, WANG Xin, DU Bing-hai, LIU Kai, WANG Cheng-qiang. Biocontrol Characteristics of Bacillus atrophaeus CNY01 and Its Salt-resistant and Growth-promoting Effect on Maize Seedling [J]. Biotechnology Bulletin, 2024, 40(5): 248-260. |
| [3] | YIN Zi-wei, HONG Yu. Study on the Effect of Rhodococcus rhodochrous NB1 on the Tolerance to Salt and Growth-promoting of Maize and Its Whole Genome [J]. Biotechnology Bulletin, 2024, 40(12): 193-207. |
| [4] | LI Jiong-shan, YANG Ze, YAN Xing, LIU Yi-zhen, GUO Yu-shuang, XUE Jin-ai, SUN Xi-ping, JI Chun-li, ZHANG Chun-hui, LI Run-zhi. Analysis of Increasing Glyphosate Resistance and Growth-promoting Effects in Soybean by Desmodesmus subspicatus [J]. Biotechnology Bulletin, 2024, 40(11): 236-247. |
| [5] | LI Xi, BIAN Zi-jun, NING Zhou-shen, LIU Hong-yu, ZENG Bing, DONG Wei. Studies on the Growth-promoting Effect of Bacillus Strain from Rhizosphere in Ionic Rare Earth Ores [J]. Biotechnology Bulletin, 2024, 40(11): 259-268. |
| [6] | LI Ying, SONG Xin-ying, HE Kang, GUO Zhi-qing, YU Jing, ZHANG Xia. Isolation and Identification of Bacillus velezensis ZHX-7 and Its Antibacterial and Growth-promoting Effects [J]. Biotechnology Bulletin, 2023, 39(12): 229-236. |
| [7] | CHE Yong-mei, LIU Guang-chao, GUO Yan-ping, YE Qing, ZHAO Fang-gui, LIU Xin. Preparation of Compound Halotolerant Bioinoculant and Study on Its Growth-promoting Effect [J]. Biotechnology Bulletin, 2023, 39(11): 217-225. |
| [8] | JIANG Mei-yan, ZHOU Yang, LIU Ren-lang, YAO Fei, YANG Yun-shu, HOU Kai, FENG Dong-ju, WU Wei. Screening and Plant Growth Promoting of Grow-promoting Bacteria in Rhizosphere Bacteria of Angelica dahurica var. formosana [J]. Biotechnology Bulletin, 2022, 38(8): 167-178. |
| [9] | ZHANG Hao-xin, WANG Zhong-hua, NIU bing, GUO Kang, LIU Lu, JIANG Ying, ZHANG Shi-xiang. Screening,Identification and Broad-spectrum Application of Efficient IAA-producing Bacteria Dissolving Phosphorus and Potassium [J]. Biotechnology Bulletin, 2022, 38(5): 100-111. |
| [10] | DU Jia-hui, XU Wei-fang, YANG Xiao-dong, TAN Song, YIN Deng-ke, LIU Yuan-xu. Isolation and Screening of Endophytes Producing Indole Acetic Acid from Polygonatum cyrtonema Hua. and Its Effect on Seed Germination of Polygonatum [J]. Biotechnology Bulletin, 2022, 38(12): 223-232. |
| [11] | TANG Jia-cheng, LIANG Yi-min, MA Jia-si, PENG Gui-xiang, TAN Zhi-yuan. Diversity and Growth Promotion of Endophytic Bacteria Isolated from Passiflora edulia Sims [J]. Biotechnology Bulletin, 2022, 38(1): 86-97. |
| [12] | XUE Qing, DU Hong-rui, XUE Hui-ying, WANG Yi-hao, WANG Xuan, LI Hong-mei. Mitochondrial Genome and Phylogeny of Aphelenchoides medicagus [J]. Biotechnology Bulletin, 2021, 37(7): 98-106. |
| [13] | ZHOU Jing, HUANG Wen-mao, QIN Li-jun, HAN Li-zhen. Construction of Mixed Fermentation System of Four PGPR Strains and Evaluation of Its Promoting Effect [J]. Biotechnology Bulletin, 2021, 37(4): 116-126. |
| [14] | QIAN Ting, YE Jian-ren. The Mechanism of Dissolving Inorganic Phosphorus by Bacillus megaterium ZS-3 and Its Growth Promotion of Cinnamomum camphora [J]. Biotechnology Bulletin, 2020, 36(8): 45-52. |
| [15] | LI Xiao-kai ,WANG Gui ,QIAO Xian ,FAN Yi-xing ,ZHANG Lei ,MA Yu-hao ,NIE Rui-xue ,WANG Rui-jun ,HE Li-bing ,SU Rui. Research Progress on Whole-genome Sequencing on Important Domesticated Animals [J]. Biotechnology Bulletin, 2018, 34(6): 11-21. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||