Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (2): 58-64.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0729
Previous Articles Next Articles
DING Ruo-xi(
), DOU Shuo(
), AN Ye-zhi, KONG Wen-hui, GUO Wen-jing, ZHANG Dong-mei, WANG Xing-fen, MA Zhi-ying, WU Li-zhu(
)
Received:2024-07-29
Online:2025-02-26
Published:2025-02-28
Contact:
WU Li-zhu
E-mail:1193262216@qq.com;wulizhu2008@163.com
DING Ruo-xi, DOU Shuo, AN Ye-zhi, KONG Wen-hui, GUO Wen-jing, ZHANG Dong-mei, WANG Xing-fen, MA Zhi-ying, WU Li-zhu. Extended Research on the Application of VIGS Technology in the Whole Growth Cycle of Cotton[J]. Biotechnology Bulletin, 2025, 41(2): 58-64.
注射部位和时期 Injection site and period | 注射株数 Number of injected cotton seedlings | 白化株数 Number of photobleaching cotton seedlings | 白化率 Photobleaching rate/% | 操作难易程度 Degree of difficulty for operation | |
|---|---|---|---|---|---|
| 4日龄幼苗茎注射 | 50 | 40 | 80.0±0.1 | 较难 | |
| 7日龄幼苗子叶注射 | 45 | 45 | 100±0.1 | 容易 | |
| 新生果枝基部(茎)注射 | 开花期 | 30 | 27 | 90.0±0.0 | 较难 |
| 结铃期 | 32 | 22 | 68.8±0.1 | 较难 | |
| 节间注射 | 开花期 | 40 | 16 | 40.0±0.1 | 难 |
| 结铃期 | 31 | 12 | 38.7±0.1 | 难 | |
| 叶片注射 | 开花期 | 30 | 0 | 0±0.0 | 无法注入 |
| 结铃期 | 31 | 0 | 0±0.0 | 无法注入 | |
Table 1 Statistics of leaf photobleaching rates after VIGS treatment at different tissue sites of cotton
注射部位和时期 Injection site and period | 注射株数 Number of injected cotton seedlings | 白化株数 Number of photobleaching cotton seedlings | 白化率 Photobleaching rate/% | 操作难易程度 Degree of difficulty for operation | |
|---|---|---|---|---|---|
| 4日龄幼苗茎注射 | 50 | 40 | 80.0±0.1 | 较难 | |
| 7日龄幼苗子叶注射 | 45 | 45 | 100±0.1 | 容易 | |
| 新生果枝基部(茎)注射 | 开花期 | 30 | 27 | 90.0±0.0 | 较难 |
| 结铃期 | 32 | 22 | 68.8±0.1 | 较难 | |
| 节间注射 | 开花期 | 40 | 16 | 40.0±0.1 | 难 |
| 结铃期 | 31 | 12 | 38.7±0.1 | 难 | |
| 叶片注射 | 开花期 | 30 | 0 | 0±0.0 | 无法注入 |
| 结铃期 | 31 | 0 | 0±0.0 | 无法注入 | |
Fig. 1 Photobleaching phenotype of cotton seedling after VIGS treatmentA: Uninfected cotton seedling. B: Cotton plants of 10 d after stem injection at 4 d of age. C: Cotton plants of 10 d after cotyledon injection at 7 d of age. Bar=2 cm
Fig. 2 Photobleaching phenotype of cotton plants after VIGS treatmentA: Phenotype of cotton plants at 3 weeks after VIGS injected to the cotton stem. B: Phenotype of cotton at 6 weeks after VIGS injected to cotton stem. C: The contrast between photobleaching leaves and old green leaves. D: Photobleaching downward. E: Coexistence of photobleaching and green on stem. Bar=10 cm
Fig. 3 Photobleaching phenotype of cotton bollA: Caducous photobleaching cotton bolls. B: Un-withered photobleaching cotton bolls. C: Mature photobleaching cotton bolls. D: The comparation of photobleaching cotton bolls and normal bolls. Bar=2 cm
Fig. 4 Phenotype observation of photobleaching durationA: Cotton phenotype at 3 weeks after injection. B: Cotton phenotype at 6 weeks after injection. C: Cotton phenotype at 12 weeks after injection. D: Cotton phenotype at 19 weeks after infection. E: Cotton phenotype at 22 weeks after infection. Bar=10 cm
Fig. 5 Identification of the GhCLA1 gene silence in cottonA: The electrophoresis result of cotton total RNA. B: The GhCLA1 gene silenced identification results by RT-RCR. C: The GhCLA1 gene silenced identification results by RT-qRCR. The capital letters indicate that the differences reached the highly significant level (P<0.01). M: 2 000 bp marker. 1: True leaf of cotton seedling untreated by VIGS. 2: The true photobleaching leaf at 10 d after VIGS treatment to seedling stems. 3: Coexisting photobleaching and green leaf at 10 d after VIGS treatment to seedling stems. 4: Normal leaf of cotton plant untreated by VIGS. 5: Completely photobleaching leaf at 2 months after VIGS treatment of plant stems. 6: Completely photobleaching stem at 2 months after VIGS treatment of plant stems. 7: Stems while coexisting of photobleaching and green leaves at 2 months after VIGS treatment of plant stems. 8: Blank control
| 1 | 古丽斯坦·赛米, 刘隋赟昊, 郑蓓, 等. 棉花Gols基因家族的鉴定及其在干旱胁迫应答中的功能研究 [J]. 农业生物技术学报, 2023, 31(4): 704-717. |
| GuLiSiTan SM, Liu SYH, Zheng B, et al. Identification of Gols gene family in cotton(Gossypium spp.) and its function analysis in drought stress response [J]. J Agric Biotechnol, 2023, 31(4): 704-717. | |
| 2 | Paterson AH, Wendel JF, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres [J]. Nature, 2012, 492(7429): 423-427. |
| 3 | Li FG, Fan GY, Wang KB, et al. Genome sequence of the cultivated cotton Gossypium arboreum [J]. Nat Genet, 2014, 46: 567-572. |
| 4 | 唐丽媛, 蔡肖, 王海涛, 等. 棉花FLA基因家族的全基因组鉴定及GhFLA05在棉纤维发育中的功能分析 [J]. 中国农业科学, 2023, 56(23): 4602-4620. |
| Tang LY, Cai X, Wang HT, et al. Genome-wide identification of cotton FLA gene family and functional analysis of GhFLA05 in cotton fiber development [J]. Sci Agric Sin, 2023, 56(23): 4602-4620. | |
| 5 | 高升旗, 邵武奎, 赵准, 等. 类钙调磷酸酶B亚基蛋白GhCBL3-A01调控棉花黄萎病抗性的功能分析 [J]. 棉花学报, 2023, 35(6): 447-458. |
| Gao SQ, Shao WK, Zhao Z, et al. Functional analysis of cotton calcineurin B-like protein GhCBL3-A01 in regulating the resistance to Verticillium wilt [J]. Cotton Sci, 2023, 35(6): 447-458. | |
| 6 | Scofield SR, Huang L, Brandt AS, et al. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway [J]. Plant Physiol, 2005, 138(4): 2165-2173. |
| 7 | Gould B, Kramer EM. Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (Columbine, Ranunculaceae) [J]. Plant Methods, 2007, 3: 6. |
| 8 | Peng RH, Jones DC, Liu F, et al. From sequencing to genome editing for cotton improvement [J]. Trends Biotechnol, 2021, 39(3): 221-224. |
| 9 | Tian Y, Fang Y, Zhang KX, et al. Applications of virus-induced gene silencing in cotton [J]. Plants (Basel), 2024, 13(2): 272. |
| 10 | 张晓红, 许佩阳, 闫绪, 等. 棉花GhFUL1基因及其启动子的克隆和功能分析 [J]. 华北农学报, 2023, 38(5): 60-68. |
| Zhang XH, Xu PY, Yan X, et al. Cloning and functional analysis of GhFUL1 gene and its promoter in cotton [J]. Acta Agric Boreali Sin, 2023, 38(5): 60-68. | |
| 11 | 于晓红, 朱勇清, 林芝萍, 等. 亚洲棉GAE6-3A上游序列的分离及其在烟草中的表达 [J]. 植物生理学报, 2000, 26(2): 143-147, 180. |
| Yu XH, Zhu YQ, Lin ZP, et al. Isolation of GAE6-3A5'-upstream fragment from Gossypium arboreum and its expression in tobacco [J]. Acta Photophysiol Sin, 2000, 26(2): 143-147, 180. | |
| 12 | Ratcliff F, Martin-Hernandez AM, Baulcombe DC. Technical Advance. Tobacco rattle virus as a vector for analysis of gene function by silencing [J]. Plant J, 2001, 25(2): 237-245. |
| 13 | Bekele D, Tesfaye K, Fikre A. Applications of virus induced gene silencing (VIGS) in plant functional genomics studies [J]. J Plant Biochem Physiol, 2019, 7(1): 1-7. |
| 14 | 高鹏飞, 席飞虎, 张泽宇, 等. 植物VIGS技术及其在林业科学中的研究进展 [J]. 生物技术通报, 2021, 37(5): 141-153. |
| Gao PF, Xi FH, Zhang ZY, et al. Research progress of plant VIGS technology and its application in forestry science [J]. Biotechnol Bull, 2021, 37(5): 141-153. | |
| 15 | 李文辰, 刘鑫, 康越, 等. TRV病毒诱导大豆基因沉默体系优化及应用 [J]. 生物技术通报, 2023, 39(7): 143-150. |
| Li WC, Liu X, Kang Y, et al. Optimization and application of tobacco rattle virus-induced gene silencing system in soybean [J]. Biotechnol Bull, 2023, 39(7): 143-150. | |
| 16 | Zhang JX, Wang FR, Zhang CY, et al. A novel VIGS method by agroinoculation of cotton seeds and application for elucidating functions of GhBI-1 in salt-stress response [J]. Plant Cell Rep, 2018, 37(8): 1091-1100. |
| 17 | Gao X, Britt RC, Shan L, et al. Agrobacterium-mediated virus-induced gene silencing assay in cotton [J]. J Vis Exp, 2011(54): 2938. |
| 18 | Liu YL, Schiff M, Dinesh-Kumar SP. Virus-induced gene silencing in tomato [J]. Plant J, 2002, 31(6): 777-786. |
| 19 | Zhang J, Yu DS, Zhang Y, et al. Vacuum and co-cultivation agroinfiltration of (germinated) seeds results in tobacco rattle virus (TRV) mediated whole-plant virus-induced gene silencing (VIGS) in wheat and maize [J]. Front Plant Sci, 2017, 8: 393. |
| 20 | Ryu CM, Anand A, Kang L, et al. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species [J]. Plant J, 2004, 40(2): 322-331. |
| 21 | Tuttle JR, Idris AM, Brown JK, et al. Geminivirus-mediated gene silencing from Cotton leaf crumple virus is enhanced by low temperature in cotton [J]. Plant Physiol, 2008, 148(1): 41-50. |
| 22 | Gao XQ, Wheeler T, Li ZH, et al. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt [J]. Plant J, 2011, 66(2): 293-305. |
| 23 | Si ZF, Wu HT, Tian Y, et al. Visible gland constantly traces virus-induced gene silencing in cotton [J]. Front Plant Sci, 2022, 13: 1020841. |
| 24 | Zhao LJ, Wang YB, Cui RF, et al. Analysis of the histidine kinase gene family and the role of GhHK8 in response to drought tolerance in cotton [J]. Physiol Plant, 2023, 175(5): e14022. |
| 25 | 张景霞, 王芙蓉, 高阳, 等. VIGS技术及其在棉花功能基因组研究中的应用进展 [J]. 棉花学报, 2015, 27(5): 469-473. |
| Zhang JX, Wang FR, Gao Y, et al. Application of VIGS in studies of gene function in cotton [J]. Cotton Sci, 2015, 27(5): 469-473. | |
| 26 | 侯雪, 王姣姣, 张雯雯, 等. 辣椒乙烯反应抑制因子Cacl-6468的克隆及其抗根结线虫作用分析 [J]. 园艺学报, 2024, 51(4): 761-772. |
| Hou X, Wang JJ, Zhang WW, et al. Cloning of pepper ethylene-responsive proteinase inhibitor Cacl-6468 and its effect on resistance to Meloidogyne incognita [J]. Acta Hortic Sin, 2024, 51(4): 761-772. | |
| 27 | 刘晓彬, 刘娜, 李福宽, 等. TRV介导的大豆基因瞬时沉默体系的建立 [J]. 中国农业科学, 2015, 48(12): 2479-2486. |
| Liu XB, Liu N, Li FK, et al. Establishment of TRV-mediated transient gene-silencing system in soybean [J]. Sci Agric Sin, 2015, 48(12): 2479-2486. | |
| 28 | Yan HX, Fu DQ, Zhu BZ, et al. Sprout vacuum-infiltration: a simple and efficient agroinoculation method for virus-induced gene silencing in diverse solanaceous species [J]. Plant Cell Rep, 2012, 31(9): 1713-1722. |
| 29 | Li XY, Tao N, Xu B, et al. Establishment and application of a root wounding-immersion method for efficient virus-induced gene silencing in plants [J]. Front Plant Sci, 2024, 15: 1336726. |
| 30 | 郝梦媛, 杭琦, 师恭曜. VIGS基因沉默技术在作物基因功能研究中的应用与展望 [J]. 中国农业科技导报, 2022, 24(1): 1-13. |
| Hao MY, Hang Q, Shi GY. Application and prospect of virus-induced gene silencing in crop gene function research [J]. J Agric Sci Technol, 2022, 24(1): 1-13. |
| [1] | LIU Jie, WANG Fei, TAO Ting, ZHANG Yu-jing, CHEN Hao-ting, ZHANG Rui-xing, SHI Yu, ZHANG Yi. Overexpression of SlWRKY41 Improves the Tolerance of Tomato Seedlings to Drought [J]. Biotechnology Bulletin, 2025, 41(2): 107-118. |
| [2] | LI Zhi-qiang, WANG Ji-ying, YUAN Ting, WANG Jia, WEI Yan-na, WANG Yu-ge, LI Shao-li, SHAO Guo-qing, FENG Zhi-xin, YU Yan-fei. Comparative Study on the Evaluation Methods for Mycoplasma pneumoniae Infection [J]. Biotechnology Bulletin, 2025, 41(1): 110-119. |
| [3] | LI Cai-xia, LI Yi, MU Hong-xiu, LIN Jun-xuan, BAI Long-qiang, SUN Mei-hua, MIAO Yan-xiu. Identification and Bioinformatics Analysis of the bHLH Transcription Factor Family in Cucurbita moschata Duch. [J]. Biotechnology Bulletin, 2025, 41(1): 186-197. |
| [4] | YUAN Liu-jiao, HUANG Wen-lin, CHEN Chong-zhi, LIANG Min, HUANG Zi-qi, CHEN Xue-xue, CHEN Ri-Meng, WANG Li-yun. Effects of Salt Stress on Physiological Characteristics, Ultrastructure and Medicinal Components of Pogostemon cablin Leaves [J]. Biotechnology Bulletin, 2025, 41(1): 230-239. |
| [5] | TAN Jing-xuan, XING De-xun, HE Tian-jin, LIU Zhan-ying. Advances in Protein Expression System of Pseudomonas fluorescens [J]. Biotechnology Bulletin, 2025, 41(1): 49-61. |
| [6] | WANG Mei-ling, GENG Li-li, FANG Yu, SHU Chang-long, ZHANG Jie. Control Potential of Bacillus thuringiensis 4BM1 Strain to Sclerotiniose in Brassica campestris L. [J]. Biotechnology Bulletin, 2024, 40(9): 260-269. |
| [7] | WANG Qian, ZHOU Jia-yan, WANG Qian, DENG Yu-ping, ZHANG Min-hui, CHEN Jing, YANG Jun, ZOU Jian. Identification and Expression Analysis of the YABBY Gene Family in Sunflower [J]. Biotechnology Bulletin, 2024, 40(8): 199-211. |
| [8] | HOU Wen-ting, SUN Lin, ZHANG Yan-jun, DONG He-zhong. Application of Gene-editing Technology for Germplasm Innovation and Genetic Improvement in Cotton [J]. Biotechnology Bulletin, 2024, 40(7): 68-77. |
| [9] | LIU Wen-hao, WU Liu-ji, XU Fang. Regulatory Mechanisms of Small Peptides in Plant Meristem Development and Its Research Advances in Crop Improvement [J]. Biotechnology Bulletin, 2024, 40(7): 1-18. |
| [10] | CHANG Xue-rui, WANG Tian-tian, WANG Jing. Identification and Analysis of E2 Gene Family in Pepper(Capsicum annuum L.) [J]. Biotechnology Bulletin, 2024, 40(6): 238-250. |
| [11] | HUA Zi-qing, ZHOU Jing-yuan, DONG He-zhong. Development of Hypocotyls and Apical Hooks in Dicotyledons and Their Regulatory Mechanisms for Seedling Emergence [J]. Biotechnology Bulletin, 2024, 40(4): 23-32. |
| [12] | WANG Cai-hong, JIANG Meng-yuan, SHAO Yu-han. Identification and Functional Study of T6SS Effector Protein PA0423 of Pseudomonas aeruginosa [J]. Biotechnology Bulletin, 2024, 40(4): 297-305. |
| [13] | WANG Juan, WANG Xin, TIAN Qin, MA Xiao-mei, ZHOU Xiao-feng, LI Bao-cheng, DONG Cheng-guang. Association Analysis and Exploration of Elite Alleles of Plant Architecture Traits in Gossypium hirsutum L. [J]. Biotechnology Bulletin, 2024, 40(3): 146-154. |
| [14] | ZHOU Hong-dan, LUO Xiao-ping, TU Mi-xue, LI Zhong-guang. Phytomelatonin: An Emerging Signal Molecule Responding to Abiotic Stress [J]. Biotechnology Bulletin, 2024, 40(3): 41-51. |
| [15] | HUA Xuan, TIAN Bo-wen, ZHOU Xin-tong, JIANG Zi-han, WANG Shi-qi, HUANG Qian-hui, ZHANG Jian, CHEN Yan-hong. Cloning SmERF B3-45 from Salix matsudana and Functional Analysis on Its Tolerance to Salt [J]. Biotechnology Bulletin, 2024, 40(12): 124-135. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||