Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (6): 71-86.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0733
Previous Articles Next Articles
LI Chen-ying1,2(
), KONG Da-shuai2, LI Ruo-nan2,3, ZHANG Yu-bo2, YAN ping2,4, LI Kui2, KONG Si-yuan2(
)
Received:2024-07-12
Online:2025-06-26
Published:2025-06-30
Contact:
KONG Si-yuan
E-mail:lcy1998102022@163.com;kongsiyuan@caas.cn
LI Chen-ying, KONG Da-shuai, LI Ruo-nan, ZHANG Yu-bo, YAN ping, LI Kui, KONG Si-yuan. Cutting-edge Omics Technology Innovations Empower Livestock and Poultry Biological Breeding[J]. Biotechnology Bulletin, 2025, 41(6): 71-86.
分类 Classification | 技术 Technology | 关键流程 Process | 优势和局限性 Advantages and limitations | 应用场景 Applications | 参考文献Reference |
|---|---|---|---|---|---|
经典的组学技术 Classical omics techniques | Sanger sequencing | PCR扩增‒PCR纯化‒循环测序‒测序纯化‒毛细管电泳‒数据分析 | 优势:读取速度快、高精确度,成本相对很低 局限:无法连续测序、测序长度受限制 | 基因突变检测、基因编辑、微生物鉴定与分型 | [ |
| Next-generation sequencing | 核酸提取‒文库制备‒上机测序‒数据分析 | 优势:通量高、速度快、测序成本低、敏感性高、所需样本量少 局限:成本高、操作复杂、检测周期长 | 全基因组测序与全外显子测序、基因变异、基因分型等 | [ | |
| RNA-seq | 总RNA提取‒rRNA去除‒双链合成‒末端修复‒接头连接‒文库扩增‒测序 | 优势:定量更准确、可重复性更高、检测范围更广、分析更可靠 局限:限制其他RNA的读数以及其他RNA表达水平的准确性 | 基因表达量测量与差异表达分析、新转录本、剪接形式和基因的发现、非编码RNA研究、生物标志物发现等 | [ | |
| ChIP-seq | 甲醛交联‒DNA片段化‒染色质免疫沉淀‒捕获DNA‒蛋白质复合物‒纯化DNA‒测序 | 优势:大量细胞起始量,挖掘转录因子、蛋白因子全基因组结合位点 局限:该技术需要高度特异性抗体、甲醛固定可能是暂时的,甚至是非特异的,可能导致相邻的蛋白形成假阳性信号 | 转录因子(TF)结合位点和靶基因的全基因组鉴定、组蛋白修饰的全基因组检测、蛋白质- DNA互作研究 | [ | |
| 微生物组16S rDNA测序 | 细菌基因组提取‒特异引物扩增16S rDNA序列‒纯化PCR产物‒测序获得16S rDNA序列 | 优势:具有良好的进化保守性、操作速度快、操作简单、成本低 局限:可以鉴定到属水平,无法准确到所有物种或亚种水平 | 微生物群落的多样性、病原菌检测与鉴定、生态系统功能研究 | [ | |
| 宏基因组二代鸟枪法测序 Shotgun sequencing | 将DNA序列随机分解成许多小片段‒通过寻找重叠区域来重新组装序列 | 优势:速度快,简单易行,成本较低 局限:会形成大量冗余序列,导致基因组信息的缺失 | 分析微生物群落的结构、环境微生物群落研究、功能基因发掘、医学诊断与研究、生态与环境保护 | [ | |
新兴的组学技术 Emerging omics technologies | 三代单分子测序 Single-molecule sequencing | DNA片段化‒发夹连接‒获得文库‒文库测序 | 优势:可以直接进行 cDNA 分析、无需逆转录、测序速度极快 局限:单读长错误率高增加测序成本 | 基因组测序、甲基化研究、突变鉴定 | [ |
| CUT&Tag | 提取细胞核‒抗体结合‒Tn5结合‒回收DNA‒PCR扩增‒文库测序 | 优势:背景噪声低、细胞起始量低、信噪比和重复性较好 局限:细胞数量要求较高、实验耗时长、数据的重复性较差 | 蛋白质与DNA互作研究、鉴定转录因子在全基因组上的结合位点、超级增强子鉴定 | [ | |
| Hi-C | 甲醛交联‒限制酶切‒末端补平‒邻近连接‒超声破碎‒biotin富集‒建库测序 | 优势:高通量测序、Hi-C可以展现出,整个染色体all-to-all的互作关系 局限:实验成本高、数据噪声大、实验过程繁琐 | 研究染色体片段之间的相互作用、基因组组装、单体型图谱构建、辅助宏基因组组装、与其他数据进行联合分析、基因调控网络、表观遗传网络 | [ | |
| In situ Hi-C | 交联‒酶切‒邻近连接‒超声破碎‒生物素下拉‒建库测序 | 优势:高效、方便、比对率高和低成本 局限:暂无法进行单细胞水平 | 疾病相关基因定位、基因表达调控、识别染色体结构变异、基因组进化与比较基因组学、药物靶点发现 | [ | |
| In situ exo-Hi-C | 交联‒酶切‒邻近连接‒线性DNA消除‒超声破碎‒ 生物素下拉‒建库测序 | 优势:高效、方便、噪声低、比对率高和低成本 局限:暂无法进行单细胞水平 | 低细胞起始量、下机测序数据少,噪声低,需求有效互作得率高。畜禽发育机制解析,功能基因挖掘等农业、医学应用 | [ | |
| ChIA-PET | 甲醛交联‒DNA片段化‒用特异性蛋白抗体富集DNA和蛋白复合物‒生物素下拉‒限制性内切酶消化‒去除蛋白质‒固定化PET序列‒上机测序 | 优势:高效、高分辨率、应用范围广泛 局限:细胞起始量要求更高、操作相对复杂 | 基因转录调控、疾病发生机制、生长发育、基因组功能研究、药物研发等 | [ | |
| GutHi-C | 微生物分离提纯‒交联裂解‒酶切‒末端补平‒纯化‒片段化‒接头连接‒文库扩增 | 优势:效率高,便于操作,成本低,数据优 局限:如手动裂解破壁步骤需要熟手操作 | 广泛用于畜禽肠道微生物建库 | [ | |
高精度的组学技术 Highly accurate omics technology | scRNA-seq | 细胞收集‒分选捕获单个细胞‒细胞裂解‒提取DNA‒合成cDNA‒扩增‒测序 | 优势:高分辨率、可探索未知的细胞类型 局限:不同类型的细胞在解离效率上存在差异、对细胞悬液质量的高要求、技术复杂 | 单细胞分辨率揭示胚胎发育过程、基因表达的动态变化、微生物群落 | [ |
| scATAC-seq | 细胞收集‒分离单细胞‒裂解‒转座‒扩增酶切割‒扩增‒测序 | 优势:高通量、低成本、高分辨率 局限:技术涉及多个步骤,对实验技术和数据分析要求较高、数据解读和结果分析具有挑战性、不同平台的实验方法和数据分析流程可能存在差异,影响结果的通用性和可比性 | 单细胞分辨率揭示胚胎发育过程、肿瘤生物学、免疫细胞的基因表达调控、细胞间互作 | [ | |
| snHi-C | 细胞核分离‒交联‒酶切‒末端修复‒连接‒纯化‒建库‒测序 | 优势:分辨率较高、灵敏度高 局限:成本高、实验复杂 | 单细胞分辨率揭示染色质三维结构、调控网络 | [ | |
| Dip-C | 细胞分离裂解‒交联固定‒染色质片段化‒连接‒标记‒ 构建文库‒测序 | 优势:高分辨率、可以在单细胞水平上进行基因组三维结构的研究 局限:成本高、实验复杂 | 单细胞分辨率揭示基因组三维结构的动态变化、染色质互作、调控网络 | [ | |
| scNanoHi-C | 交联固定‒Tn5片段化‒连接-扩增-构建文库‒三代单分子Nanopore测序 | 优势:高阶连接子的效率更高、在单个细胞中检测到更多的接触、捕获更多的杂合SNP位点进行单倍型分析 局限:Nanopore错误率高一些 | 单细胞分辨率揭示染色质高维结构、染色质高阶互作和调控网络 | [ | |
| MUSIC | 分离细胞核‒标记同一细胞核中的所有RNA和片段化DNA‒将RNA和DNA接头连接到RNA和DNA片段上‒构建单个测序文库 | 优势:分辨率高、能够同时分析单个细胞核内的多重染色质相互作用、基因表达和RNA-染色质关联,提供丰富的单细胞多组学信息 局限:成本相对较高 | 同时检测单细胞染色质三维结构和基因表达的动态变化、基因表达以及RNA-染色质关联的差异 | [ |
Table 1 Key representative technologies of cutting-edge multi-omics technologies
分类 Classification | 技术 Technology | 关键流程 Process | 优势和局限性 Advantages and limitations | 应用场景 Applications | 参考文献Reference |
|---|---|---|---|---|---|
经典的组学技术 Classical omics techniques | Sanger sequencing | PCR扩增‒PCR纯化‒循环测序‒测序纯化‒毛细管电泳‒数据分析 | 优势:读取速度快、高精确度,成本相对很低 局限:无法连续测序、测序长度受限制 | 基因突变检测、基因编辑、微生物鉴定与分型 | [ |
| Next-generation sequencing | 核酸提取‒文库制备‒上机测序‒数据分析 | 优势:通量高、速度快、测序成本低、敏感性高、所需样本量少 局限:成本高、操作复杂、检测周期长 | 全基因组测序与全外显子测序、基因变异、基因分型等 | [ | |
| RNA-seq | 总RNA提取‒rRNA去除‒双链合成‒末端修复‒接头连接‒文库扩增‒测序 | 优势:定量更准确、可重复性更高、检测范围更广、分析更可靠 局限:限制其他RNA的读数以及其他RNA表达水平的准确性 | 基因表达量测量与差异表达分析、新转录本、剪接形式和基因的发现、非编码RNA研究、生物标志物发现等 | [ | |
| ChIP-seq | 甲醛交联‒DNA片段化‒染色质免疫沉淀‒捕获DNA‒蛋白质复合物‒纯化DNA‒测序 | 优势:大量细胞起始量,挖掘转录因子、蛋白因子全基因组结合位点 局限:该技术需要高度特异性抗体、甲醛固定可能是暂时的,甚至是非特异的,可能导致相邻的蛋白形成假阳性信号 | 转录因子(TF)结合位点和靶基因的全基因组鉴定、组蛋白修饰的全基因组检测、蛋白质- DNA互作研究 | [ | |
| 微生物组16S rDNA测序 | 细菌基因组提取‒特异引物扩增16S rDNA序列‒纯化PCR产物‒测序获得16S rDNA序列 | 优势:具有良好的进化保守性、操作速度快、操作简单、成本低 局限:可以鉴定到属水平,无法准确到所有物种或亚种水平 | 微生物群落的多样性、病原菌检测与鉴定、生态系统功能研究 | [ | |
| 宏基因组二代鸟枪法测序 Shotgun sequencing | 将DNA序列随机分解成许多小片段‒通过寻找重叠区域来重新组装序列 | 优势:速度快,简单易行,成本较低 局限:会形成大量冗余序列,导致基因组信息的缺失 | 分析微生物群落的结构、环境微生物群落研究、功能基因发掘、医学诊断与研究、生态与环境保护 | [ | |
新兴的组学技术 Emerging omics technologies | 三代单分子测序 Single-molecule sequencing | DNA片段化‒发夹连接‒获得文库‒文库测序 | 优势:可以直接进行 cDNA 分析、无需逆转录、测序速度极快 局限:单读长错误率高增加测序成本 | 基因组测序、甲基化研究、突变鉴定 | [ |
| CUT&Tag | 提取细胞核‒抗体结合‒Tn5结合‒回收DNA‒PCR扩增‒文库测序 | 优势:背景噪声低、细胞起始量低、信噪比和重复性较好 局限:细胞数量要求较高、实验耗时长、数据的重复性较差 | 蛋白质与DNA互作研究、鉴定转录因子在全基因组上的结合位点、超级增强子鉴定 | [ | |
| Hi-C | 甲醛交联‒限制酶切‒末端补平‒邻近连接‒超声破碎‒biotin富集‒建库测序 | 优势:高通量测序、Hi-C可以展现出,整个染色体all-to-all的互作关系 局限:实验成本高、数据噪声大、实验过程繁琐 | 研究染色体片段之间的相互作用、基因组组装、单体型图谱构建、辅助宏基因组组装、与其他数据进行联合分析、基因调控网络、表观遗传网络 | [ | |
| In situ Hi-C | 交联‒酶切‒邻近连接‒超声破碎‒生物素下拉‒建库测序 | 优势:高效、方便、比对率高和低成本 局限:暂无法进行单细胞水平 | 疾病相关基因定位、基因表达调控、识别染色体结构变异、基因组进化与比较基因组学、药物靶点发现 | [ | |
| In situ exo-Hi-C | 交联‒酶切‒邻近连接‒线性DNA消除‒超声破碎‒ 生物素下拉‒建库测序 | 优势:高效、方便、噪声低、比对率高和低成本 局限:暂无法进行单细胞水平 | 低细胞起始量、下机测序数据少,噪声低,需求有效互作得率高。畜禽发育机制解析,功能基因挖掘等农业、医学应用 | [ | |
| ChIA-PET | 甲醛交联‒DNA片段化‒用特异性蛋白抗体富集DNA和蛋白复合物‒生物素下拉‒限制性内切酶消化‒去除蛋白质‒固定化PET序列‒上机测序 | 优势:高效、高分辨率、应用范围广泛 局限:细胞起始量要求更高、操作相对复杂 | 基因转录调控、疾病发生机制、生长发育、基因组功能研究、药物研发等 | [ | |
| GutHi-C | 微生物分离提纯‒交联裂解‒酶切‒末端补平‒纯化‒片段化‒接头连接‒文库扩增 | 优势:效率高,便于操作,成本低,数据优 局限:如手动裂解破壁步骤需要熟手操作 | 广泛用于畜禽肠道微生物建库 | [ | |
高精度的组学技术 Highly accurate omics technology | scRNA-seq | 细胞收集‒分选捕获单个细胞‒细胞裂解‒提取DNA‒合成cDNA‒扩增‒测序 | 优势:高分辨率、可探索未知的细胞类型 局限:不同类型的细胞在解离效率上存在差异、对细胞悬液质量的高要求、技术复杂 | 单细胞分辨率揭示胚胎发育过程、基因表达的动态变化、微生物群落 | [ |
| scATAC-seq | 细胞收集‒分离单细胞‒裂解‒转座‒扩增酶切割‒扩增‒测序 | 优势:高通量、低成本、高分辨率 局限:技术涉及多个步骤,对实验技术和数据分析要求较高、数据解读和结果分析具有挑战性、不同平台的实验方法和数据分析流程可能存在差异,影响结果的通用性和可比性 | 单细胞分辨率揭示胚胎发育过程、肿瘤生物学、免疫细胞的基因表达调控、细胞间互作 | [ | |
| snHi-C | 细胞核分离‒交联‒酶切‒末端修复‒连接‒纯化‒建库‒测序 | 优势:分辨率较高、灵敏度高 局限:成本高、实验复杂 | 单细胞分辨率揭示染色质三维结构、调控网络 | [ | |
| Dip-C | 细胞分离裂解‒交联固定‒染色质片段化‒连接‒标记‒ 构建文库‒测序 | 优势:高分辨率、可以在单细胞水平上进行基因组三维结构的研究 局限:成本高、实验复杂 | 单细胞分辨率揭示基因组三维结构的动态变化、染色质互作、调控网络 | [ | |
| scNanoHi-C | 交联固定‒Tn5片段化‒连接-扩增-构建文库‒三代单分子Nanopore测序 | 优势:高阶连接子的效率更高、在单个细胞中检测到更多的接触、捕获更多的杂合SNP位点进行单倍型分析 局限:Nanopore错误率高一些 | 单细胞分辨率揭示染色质高维结构、染色质高阶互作和调控网络 | [ | |
| MUSIC | 分离细胞核‒标记同一细胞核中的所有RNA和片段化DNA‒将RNA和DNA接头连接到RNA和DNA片段上‒构建单个测序文库 | 优势:分辨率高、能够同时分析单个细胞核内的多重染色质相互作用、基因表达和RNA-染色质关联,提供丰富的单细胞多组学信息 局限:成本相对较高 | 同时检测单细胞染色质三维结构和基因表达的动态变化、基因表达以及RNA-染色质关联的差异 | [ |
| 1 | Xu P, Cui LL, Huang T, et al. Genome-wide identification of quantitative trait transcripts for blood traits in the liver samples of a White Duroc × Erhualian F2 pig resource population [J]. Physiol Genomics, 2016, 48(8): 573-579. |
| 2 | Powder KE. Quantitative trait loci (QTL) mapping [J]. Methods Mol Biol, 2020, 2082: 211-229. |
| 3 | Tang MS, Wang T, Zhang XF. A review of SNP heritability estimation methods [J]. Brief Bioinform, 2022, 23(3): bbac067. |
| 4 | Bruce Walsh J. Genomic selection signatures and animal breeding [J]. J Anim Breed Genet, 2021, 138(1): 1-3. |
| 5 | Platten JD, Cobb JN, Zantua RE. Criteria for evaluating molecular markers: comprehensive quality metrics to improve marker-assisted selection [J]. PLoS One, 2019, 14(1): e0210529. |
| 6 | Anand A, Subramanian M, Kar D. Breeding techniques to dispense higher genetic gains [J]. Front Plant Sci, 2023, 13: 1076094. |
| 7 | Khan MZ, Chen WT, Huang BJ, et al. Advancements in genetic marker exploration for livestock vertebral traits with a focus on China [J]. Animals, 2024, 14(4): 594. |
| 8 | Raina VS, Kour A, Chakravarty AK, et al. Marker-assisted selection vis-à-vis bull fertility: coming full circle-a review [J]. Mol Biol Rep, 2020, 47(11): 9123-9133. |
| 9 | Gupta D, Bhattacharjee O, Mandal D, et al. CRISPR-Cas9 system: a new-fangled dawn in gene editing [J]. Life Sci, 2019, 232: 116636. |
| 10 | Jain S, Shukla S, Yang C, et al. TALEN outperforms Cas9 in editing heterochromatin target sites [J]. Nat Commun, 2021, 12(1): 606. |
| 11 | Li YF, Guha CD, Asp P, et al. Resolution of hepatic fibrosis after ZFN-mediated gene editing in the PiZ mouse model of human α1-antitrypsin deficiency [J]. Hepatol Commun, 2023, 7(3): e0070. |
| 12 | Lanigan TM, Kopera HC, Saunders TL. Principles of genetic engineering [J]. Genes, 2020, 11(3): 291. |
| 13 | Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors [J]. Proc Natl Acad Sci U S A, 1977, 74(12): 5463-5467. |
| 14 | Rodriguez R, Krishnan Y. The chemistry of next-generation sequencing [J]. Nat Biotechnol, 2023, 41(12): 1709-1715. |
| 15 | Scarano C, Veneruso I, De Simone RR, et al. The third-generation sequencing challenge: novel insights for the omic sciences [J]. Biomolecules, 2024, 14(5): 568. |
| 16 | Zhang Y, Li GL. Advances in technologies for 3D genomics research [J]. Sci China Life Sci, 2020, 63(6): 811-824. |
| 17 | Wishart DS. Metabolomics for investigating physiological and pathophysiological processes [J]. Physiol Rev, 2019, 99(4): 1819-1875. |
| 18 | Rozanova S, Barkovits K, Nikolov M, et al. Quantitative mass spectrometry-based proteomics: an overview [J]. Methods Mol Biol, 2021, 2228: 85-116. |
| 19 | Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics [J]. Nat Rev Mol Cell Biol, 2022, 23(6): 389-406. |
| 20 | Chakraborty D, Sharma N, Kour S, et al. Applications of omics technology for livestock selection and improvement [J]. Front Genet, 2022, 13: 774113. |
| 21 | Johnsson M. Genomics in animal breeding from the perspectives of matrices and molecules [J]. Hereditas, 2023, 160(1): 20. |
| 22 | Song XY, Li XM, Liu X, et al. Copy number variation of the ZNF679 gene in cattle and its association analysis with growth traits [J]. Anim Biotechnol, 2023, 34(9): 4680-4686. |
| 23 | Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps [J]. Genetics, 2001, 157(4): 1819-1829. |
| 24 | Xu YB, Liu XG, Fu JJ, et al. Enhancing genetic gain through genomic selection: from livestock to plants [J]. Plant Commun, 2019, 1(1): 100005. |
| 25 | Dekkers JCM, Hospital F. The use of molecular genetics in the improvement of agricultural populations [J]. Nat Rev Genet, 2002, 3(1): 22-32. |
| 26 | Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes [J]. Nat Rev Genet, 2009, 10(6): 381-391. |
| 27 | Lopes R, Agami R, Korkmaz G. GRO-seq, A tool for identification of transcripts regulating gene expression [J]. Methods Mol Biol, 2017, 1543: 45-55. |
| 28 | Rao A, Barkley D, França GS, et al. Exploring tissue architecture using spatial transcriptomics [J]. Nature, 2021, 596(7871): 211-220. |
| 29 | Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis [J]. Wiley Interdiscip Rev RNA, 2017, 8(1): 10.1002/wrna.1364. |
| 30 | Jiang ZH, Zhou X, Li R, et al. Whole transcriptome analysis with sequencing: methods, challenges and potential solutions [J]. Cell Mol Life Sci, 2015, 72(18): 3425-3439. |
| 31 | David Allis C, Jenuwein T. The molecular hallmarks of epigenetic control [J]. Nat Rev Genet, 2016, 17(8): 487-500. |
| 32 | Gopinathan G, Diekwisch TGH. Epigenetics and early development [J]. J Dev Biol, 2022, 10(2): 26. |
| 33 | Li YY. Modern epigenetics methods in biological research [J]. Methods, 2021, 187: 104-113. |
| 34 | Zhang YJ, Sun ZX, Jia JQ, et al. Overview of histone modification [J]. Adv Exp Med Biol, 2021, 1283: 1-16. |
| 35 | Peixoto P, Cartron PF, Serandour AA, et al. From 1957 to nowadays: a brief history of epigenetics [J]. Int J Mol Sci, 2020, 21(20): 7571. |
| 36 | Park PJ. ChIP-seq: advantages and challenges of a maturing technology [J]. Nat Rev Genet, 2009, 10(10): 669-680. |
| 37 | Nakato R, Sakata T. Methods for ChIP-seq analysis: a practical workflow and advanced applications [J]. Methods, 2021, 187: 44-53. |
| 38 | Kaya-Okur HS, Wu SJ, Codomo CA, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells [J]. Nat Commun, 2019, 10(1): 1930. |
| 39 | Henikoff S, Henikoff JG, Kaya-Okur HS, et al. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation [J]. eLife, 2020, 9: e63274. |
| 40 | Fu ZJ, Jiang SJ, Sun YW, et al. Cut&tag: a powerful epigenetic tool for chromatin profiling [J]. Epigenetics, 2024, 19(1): 2293411. |
| 41 | Ding RR, Zhuang ZW, Qiu YB, et al. Identify known and novel candidate genes associated with backfat thickness in Duroc pigs by large-scale genome-wide association analysis [J]. J Anim Sci, 2022, 100(2): skac012. |
| 42 | Xiong XW, Yang H, Yang B, et al. Identification of quantitative trait transcripts for growth traits in the large scales of liver and muscle samples [J]. Physiol Genomics, 2015, 47(7): 274-280. |
| 43 | García-Ruiz A, Cole JB, VanRaden PM, et al. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection [J]. Proc Natl Acad Sci U S A, 2016, 113(28): E3995-E4004. |
| 44 | Tan XD, Liu RR, Li W, et al. Assessment the effect of genomic selection and detection of selective signature in broilers [J]. Poult Sci, 2022, 101(6): 101856. |
| 45 | Wu GF, Ma L, Wang L, et al. Analysis of transcriptome and miRNAome in the muscle of bamei pigs at different developmental stages [J]. Animals, 2020, 10(7): 1198. |
| 46 | Zhang T, Chen L, Han KP, et al. Transcriptome analysis of ovary in relatively greater and lesser egg producing Jinghai Yellow Chicken [J]. Anim Reprod Sci, 2019, 208: 106114. |
| 47 | Tao Z, Song W, Zhu C, et al. Comparative transcriptomic analysis of high and low egg-producing duck ovaries [J]. Poult Sci, 2017, 96(12): 4378-4388. |
| 48 | An JH, Qin JZ, Wan Y, et al. Histone lysine methylation exhibits a distinct distribution during spermatogenesis in pigs [J]. Theriogenology, 2015, 84(9): 1455-1462. |
| 49 | Zhao YX, Hou Y, Xu YY, et al. A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome [J]. Nat Commun, 2021, 12(1): 2217. |
| 50 | Li MX, Liu Q, Xie S, et al. LncRNA TCONS00323213 promotes myogenic differentiation by interacting with PKNOX2 to upregulate MyoG in porcine satellite cells [J]. Int J Mol Sci, 2023, 24(7): 6773. |
| 51 | Rhodes CT, Thompson JJ, Mitra A, et al. An epigenome atlas of neural progenitors within the embryonic mouse forebrain [J]. Nat Commun, 2022, 13(1): 4196. |
| 52 | Zhou C, Halstead MM, Bonnet-Garnier A, et al. Histone remodeling reflects conserved mechanisms of bovine and human preimplantation development [J]. EMBO Rep, 2023, 24(3): e55726. |
| 53 | Akdogan-Ozdilek B, Duval KL, Meng FW, et al. Identification of chromatin states during zebrafish gastrulation using CUT&RUN and CUT&Tag [J]. Dev Dyn, 2022, 251(4): 729-742. |
| 54 | Nakaya A, Isobe SN. Will genomic selection be a practical method for plant breeding? [J]. Ann Bot, 2012, 110(6): 1303-1316. |
| 55 | Dekker J, Rippe K, Dekker M, et al. Capturing chromosome conformation [J]. Science, 2002, 295(5558): 1306-1311. |
| 56 | Simonis M, Klous P, Splinter E, et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C) [J]. Nat Genet, 2006, 38(11): 1348-1354. |
| 57 | Belton JM, Dekker J. Chromosome conformation capture carbon copy (5C) in budding yeast [J]. Cold Spring Harb Protoc, 2015, 2015(6): 593-598. |
| 58 | Belton JM, McCord RP, Gibcus JH, et al. Hi-C: a comprehensive technique to capture the conformation of genomes [J]. Methods, 2012, 58(3): 268-276. |
| 59 | Rao SSP, Huntley MH, Durand NC, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping [J]. Cell, 2014, 159(7): 1665-1680. |
| 60 | Ma WX, Ay F, Lee C, et al. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes [J]. Nat Methods, 2015, 12(1): 71-78. |
| 61 | Schoenfelder S, Sexton T, Chakalova L, et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells [J]. Nat Genet, 2010, 42(1): 53-61. |
| 62 | Nagano T, Lubling Y, Stevens TJ, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure [J]. Nature, 2013, 502(7469): 59-64. |
| 63 | Kong S, Li Q, Zhang G, et al. Exonuclease combinations reduce noises in 3D genomics technologies [J]. Nucleic Acids Res, 2020, 48(8): e44. |
| 64 | Lee B, Wang JH, Cai LY, et al. ChIA-PIPE: a fully automated pipeline for comprehensive ChIA-PET data analysis and visualization [J]. Sci Adv, 2020, 6(28): eaay2078. |
| 65 | Wang RM, Wang YL, Zhang XY, et al. Hierarchical cooperation of transcription factors from integration analysis of DNA sequences, ChIP-Seq and ChIA-PET data [J]. BMC Genomics, 2019, 20(): 296. |
| 66 | Djekidel MN, Liang ZY, Wang Q, et al. 3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process [J]. Genome Biol, 2015, 16: 288. |
| 67 | Jin L, Wang DY, Zhang JM, et al. Dynamic chromatin architecture of the porcine adipose tissues with weight gain and loss [J]. Nat Commun, 2023, 14: 3457. |
| 68 | Shao D, Yang Y, Shi S, et al. Three-dimensional organization of chicken genome provides insights into genetic adaptation to extreme environments [J]. Genes: Basel, 2022, 13(12): 2317. |
| 69 | Li J, Lin Y, Li DY, et al. Building haplotype-resolved 3D genome maps of chicken skeletal muscle [J]. Adv Sci, 2024, 11(24): e2305706. |
| 70 | Cao J, Ren R, Li X, et al. Virus infection induces immune gene activation with CTCF-anchored enhancers and chromatin interactions in pig genome [J]. Genomics Proteomics Bioinformatics. 2024, 22(5):qzae062. |
| 71 | Liu R, Li X, Zhang X, et al. Long-range interaction within the chromatin domain determines regulatory patterns in porcine skeletal muscle [J]. Genomics, 2022, 114(6):110482. |
| 72 | Kong SY, Lu YH, Tan SH, et al. Nucleosome-omics: a perspective on the epigenetic code and 3D genome landscape [J]. Genes, 2022, 13(7): 1114. |
| 73 | Suchodolski JS. Analysis of the gut microbiome in dogs and cats [J]. Vet Clin Pathol, 2022, 50(): 6-17. |
| 74 | Woo PY, Lau SP, Teng JL, et al. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories [J]. Clin Microbiol Infect, 2008, 14(10): 908-934. |
| 75 | Drancourt M, Bollet C, Carlioz A, et al. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates [J]. J Clin Microbiol, 2000, 38(10): 3623-3630. |
| 76 | Bars-Cortina D, Ramon E, Rius-Sansalvador B, et al. Comparison between 16S rRNA and shotgun sequencing in colorectal cancer, advanced colorectal lesions, and healthy human gut microbiota [J]. BMC Genomics, 2024, 25(1): 730. |
| 77 | Wang YH, Gao PW, Li CY, et al. High-fidelity gut metagenome: a new insight of identification of functional probiotics [J]. J Integr Agric, 2024. . |
| 78 | Lu YX, Yang JB, Li CY, et al. Efficient and easy-to-use capturing three-dimensional metagenome interactions with GutHi-C [J]. Imeta, 2024, 3(5): e227. |
| 79 | Liu L, Zhao X, Wang Q, et al. Prosteatotic and protective components in a unique model of fatty liver: gut microbiota and suppressed complement system [J]. Sci Rep, 2016, 6: 31763. |
| 80 | Wen K, Liu L, Zhao MM, et al. The changes in microbiotic composition of different intestinal tracts and the effects of supplemented Lactobacillus during the formation of goose fatty liver [J]. Front Microbiol, 2022, 13: 906895. |
| 81 | Zang XP, Wang WJ, Gu SC, et al. Interaction between microbes and host in sow vaginas in early pregnancy [J]. mSystems, 2023, 8(2): e0119222. |
| 82 | Jangid A, Fukuda S, Suzuki Y, et al. Shotgun metagenomic sequencing revealed the prebiotic potential of a grain-based diet in mice [J]. Sci Rep, 2022, 12(1): 6748. |
| 83 | Riiser ES, Haverkamp THA, Varadharajan S, et al. Metagenomic shotgun analyses reveal complex patterns of intra- and interspecific variation in the intestinal microbiomes of codfishes [J]. Appl Environ Microbiol, 2020, 86(6): e02788-19. |
| 84 | Bickhart DM, Kolmogorov M, Tseng E, et al. Generating lineage-resolved, complete metagenome-assembled genomes from complex microbial communities [J]. Nat Biotechnol, 2022, 40(5): 711-719. |
| 85 | Bickhart DM, Watson M, Koren S, et al. Assignment of virus and antimicrobial resistance genes to microbial hosts in a complex microbial community by combined long-read assembly and proximity ligation [J]. Genome Biol, 2019, 20(1): 153. |
| 86 | Press M, Wiser AH, Kronenberg ZN, et al. Hi-C deconvolution of a human gut microbiome yields high-quality draft genomes and reveals plasmid-genome interactions [J]. bioRxiv, 2017, 8(3): 198713-198725. |
| 87 | Michael Janda J, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls [J]. J Clin Microbiol, 2007, 45(9): 2761-2764. |
| 88 | Lyons A, Brown J, Davenport KM. Single-cell sequencing technology in ruminant livestock: challenges and opportunities [J]. Curr Issues Mol Biol, 2024, 46(6): 5291-5306. |
| 89 | Kong SY, Huang QT, Zhang YB, et al. The future of 3D genomic technology: Precision-omics[J]. Gene Technology, 2020, 9: 155-158. |
| 90 | Li W, Lu JS, Lu P, et al. scNanoHi-C: a single-cell long-read concatemer sequencing method to reveal high-order chromatin structures within individual cells [J]. Nat Methods, 2023, 20(10): 1493-1505. |
| 91 | Wen XZ, Luo ZF, Zhao WX, et al. Single-cell multiplex chromatin and RNA interactions in ageing human brain [J]. Nature, 2024, 628: 648-656. |
| 92 | Giassetti MI, Miao DQ, Law NC, et al. ARRDC5 expression is conserved in mammalian testes and required for normal sperm morphogenesis [J]. Nat Commun, 2023, 14(1): 2111. |
| 93 | Dai MM, Zhu SF, An ZH, et al. Dissection of key factors correlating with H5N1 avian influenza virus driven inflammatory lung injury of chicken identified by single-cell analysis [J]. PLoS Pathog, 2023, 19(10): e1011685. |
| 94 | Cai S, Hu B, Wang X, et al. Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig [J]. BMC Biol, 2023, 21(1): 19. |
| 95 | Cai CC, Wan P, Wang H, et al. Transcriptional and open chromatin analysis of bovine skeletal muscle development by single-cell sequencing [J]. Cell Prolif, 2023, 56(9): e13430. |
| 96 | Wang XY, Liu DL, Luo J, et al. Exploring the role of enhancer-mediated transcriptional regulation in precision biology [J]. Int J Mol Sci, 2023, 24(13): 10843. |
| [1] | DUAN Yong-hong, YANG Xin, YU Guan-qun, XIA Jun-jun, SONG Lu-shuai, BAI Xiao-dong, PENG Suo-tang. Genetic Diversity and Principal Component Analysis of 125 Potato Germplasm Resources [J]. Biotechnology Bulletin, 2025, 41(6): 130-143. |
| [2] | LIU Wen-hao, WU Liu-ji, XU Fang. Regulatory Mechanisms of Small Peptides in Plant Meristem Development and Its Research Advances in Crop Improvement [J]. Biotechnology Bulletin, 2024, 40(7): 1-18. |
| [3] | WANG Juan, WANG Xin, TIAN Qin, MA Xiao-mei, ZHOU Xiao-feng, LI Bao-cheng, DONG Cheng-guang. Association Analysis and Exploration of Elite Alleles of Plant Architecture Traits in Gossypium hirsutum L. [J]. Biotechnology Bulletin, 2024, 40(3): 146-154. |
| [4] | ZHANG Xin, WU Ke-yi, ZHU Si-chen, LI Yu, LI Lan-zhou. Effect of Cultivation Conditions on the Content of Polysaccharide in Ganoderma tsugae and its Antioxidant Activity [J]. Biotechnology Bulletin, 2024, 40(11): 47-57. |
| [5] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
| [6] | LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry [J]. Biotechnology Bulletin, 2023, 39(8): 4-10. |
| [7] | ZHANG Yong, XU Tian-jun, LYU Tian-fang, XING Jin-feng, LIU Hong-wei, CAI Wan-tao, LIU Yue-e, ZHAO Jiu-ran, WANG Rong-huan. Effects of Planting Density on the Stem Quality and Root Phenotypic Characters of Summer Sowing Maize [J]. Biotechnology Bulletin, 2023, 39(8): 70-79. |
| [8] | LU Zhen-wan, LI Xue-qi, HUANG Jin-guang, ZHOU Huan-bin. Creation of Glyphosate-tolerant Rice by Cytosine Base Editing [J]. Biotechnology Bulletin, 2023, 39(2): 63-69. |
| [9] | LI Peng-cheng, ZHANG Ming-jun, WANG Yin-xiao, LI Xiang-yin, LI Sheng-yan, LANG Zhi-hong. Insect Resistance Identification and Agronomy Traits Analysis of Transgenic Maize HGK60 with Different Genetic Backgrounds [J]. Biotechnology Bulletin, 2023, 39(1): 40-47. |
| [10] | WANG Cui-cui, FU Da-qi. Research Progress in the Effects of Ubiquitin-proteasome System on Plant Agronomic Traits [J]. Biotechnology Bulletin, 2023, 39(1): 72-83. |
| [11] | DING Ya-qun, DING Ning, XIE Shen-min, HUANG Meng-na, ZHANG Yu, ZHANG Qin, JIANG Li. Construction of Vps28 Knock-out Mice and Model Study of the Impact on Lactation and Immune Traits [J]. Biotechnology Bulletin, 2022, 38(3): 164-172. |
| [12] | CHEN Yi-dan, ZHANG Yu, YANG Jie, ZHANG Qin, JIANG Li. Exploration of Key Functional Genes Affecting Milk Production Traits in Dairy Cattle Based on RNA-seq [J]. Biotechnology Bulletin, 2020, 36(9): 244-252. |
| [13] | ZOU Kun, CUI Hong-yan, XUE Yuan, ZHANG Shao-wei, LU Li-li, ZHAO Zhi-hui, SU Ying. Correlation Between FSHR and ESR1 and Breeding Traits in Leizhou Black Duck [J]. Biotechnology Bulletin, 2019, 35(8): 118-126. |
| [14] | LI Biao, ZHANG Rui-ying, WANG Xiao-qi, ZHANG Cun-fang, DUAN Zi-yuan. Microsatellite Polymorphism and Its Correlation Analysis with Body Size Traits of Tan Sheep [J]. Biotechnology Bulletin, 2019, 35(6): 131-137. |
| [15] | HUANG Long, WU Ben-li, HE Ji-xiang, CHEN Jing, SONG Guang-tong, WANG Xiang, ZHANG Ye, WU Song. SNP Identification of MyoD1 Gene and Its Correlation with Growth Traits in Pelodiscus sinensis [J]. Biotechnology Bulletin, 2019, 35(4): 76-81. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||