Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (6): 61-70.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0933
Previous Articles Next Articles
LIU Hua1,2(
), SONG Jie3, ZENG Hai-juan1,2, WANG Jin-bin1,2(
), QIAN Yun-fang3(
)
Received:2024-09-25
Online:2025-06-26
Published:2025-06-30
Contact:
WANG Jin-bin, QIAN Yun-fang
E-mail:liuhua0212@foxmail.com;wangjinbin2013@126.com;yfqian@shou.edu.cn
LIU Hua, SONG Jie, ZENG Hai-juan, WANG Jin-bin, QIAN Yun-fang. Research Progress in Single-base Mutation Detection Methods and Applications[J]. Biotechnology Bulletin, 2025, 41(6): 61-70.
平台名称 Platform name | 效应蛋白 Effector protein | 扩增方式 Amplification | 靶标 Target | 结果显示 Readout | 检测限 LOD | 检测时长 Time | 参考文献 References |
|---|---|---|---|---|---|---|---|
| CRISDA | Cas9 | 链置换扩增 SDA | 乳腺癌相关SNPs Breast cancer-associated SNPs | 荧光检测 Fluorescence detection | 1 aM | ~2 h | [ |
| CASLFA | Cas9 | 聚合酶链式反应 PCR | 单增李斯特菌 Listeria monocytogenes | 侧向层析试纸条 Lateral flow test strips | 100 copies | <1 h | [ |
| Cas9 | 链置换扩增+滚环扩增 SDA+RCA | 大肠杆菌 O157:H7 E. coli O157:H7 | 荧光检测 Fluorescence detection | 40 CFU/mL | ~2 h | [ | |
| HOLMES | Cas12 | 聚合酶链式反应 PCR | 痛风相关SNP Gout SNP | 荧光检测 Fluorescence detection | 10 aM | ~1 h | [ |
| DETECTR | LbCas12a | 重组酶聚合酶扩增 RPA | 人乳头瘤病毒16/18 HPV16/HPV18 | 荧光检测 Fluorescence detection | 1 aM | ≤1 h | [ |
| Cas12a | 重组酶聚合酶扩增 RPA | 炭疽芽孢杆菌 Bacillus anthracis | 肉眼观察 Naked eye | 1 copy | ~90 min | [ | |
| Cas12a | 环介导等温扩增 LAMP | 肠道沙门氏菌毒力基因 Virulence genes of Salmonella enterica | 荧光检测 Fluorescence detection | 15 copies/μL | ~1 h | [ | |
| RatioCRISPR | Cas12a | 重组酶聚合酶扩增 RPA | 线粒体DNA mtDNA | 荧光检测 Fluorescence detection | 15.7 aM | ~25 min | [ |
| CASMART | Cas12a | 重组酶聚合酶扩增 RPA | 肺癌相关基因 EGFR L858R Lung cancer-related genes EGFR L858R | 荧光检测 Fluorescence detection | 0.3 copies/μL | ~1 h | [ |
| CDetection | AaCas12b | 重组酶聚合酶扩增 RPA | 花椰菜花叶病毒/人乳头瘤病毒16/18 CaMV/HPV16/HPV18 | 荧光检测 Fluorescence detection | 1 aM | ~1 h | [ |
| HOLMESv2 | Cas12b | 环介导等温扩增 LAMP | 癌症相关基因HEK293T SNP HEK293T SNP | 荧光检测 Fluorescence detection | 10-8 nM | <2.5 h | [ |
| Cas12c-DETECTOR | Cas12c1 | 重组酶聚合酶扩增 RPA | 新冠病毒/人乳头瘤病毒16/18 CoVID2019 SNP/HPV16/HPV18 | 荧光检测/侧向层析试纸条 Fluorescence detection/lateral flow test strips | - | ~2 h | [ |
| Cas14-DETECTR | Cas14a | 含硫代磷酸酯引物的聚合酶链式反应 PT-PCR | 人类HERC2 SNP Human HERC2 SNP | 荧光检测 Fluorescence detection | - | ~1 h | [ |
| Cas14a | 抑制探针置换扩增BDA | 人结直肠癌细胞的BRAF基因的SNP Carcinoma of colon and rectum BRAF SNP | 荧光检测 Fluorescence detection | 103 copies | <2 h | [ | |
| SHERLOCK | Cas13a | 重组酶聚合酶扩增 RPA | 人体健康/寨卡病毒/登革热病毒SNP Human health/ZIKV/DENV SNP | 荧光检测 Fluorescence detection | 0.1% DNA | <1 h | [ |
| Cas13a | 聚合酶链式反应 PCR | 红斑石斑鱼神经坏死病毒 RGNNV | 荧光检测 Fluorescence detection | 102 fM | <1 h | [ | |
| Cas13a | 重组酶聚合酶扩增 RPA | 番茄斑萎病毒 TSWV | 荧光检测 Fluorescence detection | 2.26 × 102 copies/μL | <1 h | [ | |
| RfxCas13d | 重组酶聚合酶扩增 RPA | 水稻黑条矮缩病毒 RBSDV | 荧光检测/侧向层析试纸条 Fluorescence detection / lateral flow test strips | 1 aM | 30-60 min | [ |
Table 1 Application of different CRISPR/Cas systems targeting nucleic acids in SNP detection
平台名称 Platform name | 效应蛋白 Effector protein | 扩增方式 Amplification | 靶标 Target | 结果显示 Readout | 检测限 LOD | 检测时长 Time | 参考文献 References |
|---|---|---|---|---|---|---|---|
| CRISDA | Cas9 | 链置换扩增 SDA | 乳腺癌相关SNPs Breast cancer-associated SNPs | 荧光检测 Fluorescence detection | 1 aM | ~2 h | [ |
| CASLFA | Cas9 | 聚合酶链式反应 PCR | 单增李斯特菌 Listeria monocytogenes | 侧向层析试纸条 Lateral flow test strips | 100 copies | <1 h | [ |
| Cas9 | 链置换扩增+滚环扩增 SDA+RCA | 大肠杆菌 O157:H7 E. coli O157:H7 | 荧光检测 Fluorescence detection | 40 CFU/mL | ~2 h | [ | |
| HOLMES | Cas12 | 聚合酶链式反应 PCR | 痛风相关SNP Gout SNP | 荧光检测 Fluorescence detection | 10 aM | ~1 h | [ |
| DETECTR | LbCas12a | 重组酶聚合酶扩增 RPA | 人乳头瘤病毒16/18 HPV16/HPV18 | 荧光检测 Fluorescence detection | 1 aM | ≤1 h | [ |
| Cas12a | 重组酶聚合酶扩增 RPA | 炭疽芽孢杆菌 Bacillus anthracis | 肉眼观察 Naked eye | 1 copy | ~90 min | [ | |
| Cas12a | 环介导等温扩增 LAMP | 肠道沙门氏菌毒力基因 Virulence genes of Salmonella enterica | 荧光检测 Fluorescence detection | 15 copies/μL | ~1 h | [ | |
| RatioCRISPR | Cas12a | 重组酶聚合酶扩增 RPA | 线粒体DNA mtDNA | 荧光检测 Fluorescence detection | 15.7 aM | ~25 min | [ |
| CASMART | Cas12a | 重组酶聚合酶扩增 RPA | 肺癌相关基因 EGFR L858R Lung cancer-related genes EGFR L858R | 荧光检测 Fluorescence detection | 0.3 copies/μL | ~1 h | [ |
| CDetection | AaCas12b | 重组酶聚合酶扩增 RPA | 花椰菜花叶病毒/人乳头瘤病毒16/18 CaMV/HPV16/HPV18 | 荧光检测 Fluorescence detection | 1 aM | ~1 h | [ |
| HOLMESv2 | Cas12b | 环介导等温扩增 LAMP | 癌症相关基因HEK293T SNP HEK293T SNP | 荧光检测 Fluorescence detection | 10-8 nM | <2.5 h | [ |
| Cas12c-DETECTOR | Cas12c1 | 重组酶聚合酶扩增 RPA | 新冠病毒/人乳头瘤病毒16/18 CoVID2019 SNP/HPV16/HPV18 | 荧光检测/侧向层析试纸条 Fluorescence detection/lateral flow test strips | - | ~2 h | [ |
| Cas14-DETECTR | Cas14a | 含硫代磷酸酯引物的聚合酶链式反应 PT-PCR | 人类HERC2 SNP Human HERC2 SNP | 荧光检测 Fluorescence detection | - | ~1 h | [ |
| Cas14a | 抑制探针置换扩增BDA | 人结直肠癌细胞的BRAF基因的SNP Carcinoma of colon and rectum BRAF SNP | 荧光检测 Fluorescence detection | 103 copies | <2 h | [ | |
| SHERLOCK | Cas13a | 重组酶聚合酶扩增 RPA | 人体健康/寨卡病毒/登革热病毒SNP Human health/ZIKV/DENV SNP | 荧光检测 Fluorescence detection | 0.1% DNA | <1 h | [ |
| Cas13a | 聚合酶链式反应 PCR | 红斑石斑鱼神经坏死病毒 RGNNV | 荧光检测 Fluorescence detection | 102 fM | <1 h | [ | |
| Cas13a | 重组酶聚合酶扩增 RPA | 番茄斑萎病毒 TSWV | 荧光检测 Fluorescence detection | 2.26 × 102 copies/μL | <1 h | [ | |
| RfxCas13d | 重组酶聚合酶扩增 RPA | 水稻黑条矮缩病毒 RBSDV | 荧光检测/侧向层析试纸条 Fluorescence detection / lateral flow test strips | 1 aM | 30-60 min | [ |
| 1 | 范广轩, 王洪亮, 邢秀梅. SNP标记的研究进展及其应用 [J/OL]. 特产研究, 2023: 1-9. (2023-11-29). . |
| Fan GX, Wang HL, Xing XM. Advances in SNP marker research and its applications [J/OL]. China Ind Econ, 2023: 1-9. (2023-11-29). . | |
| 2 | Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms [J]. Nature, 2001, 409(6822): 928-933. |
| 3 | Jorde LB. Linkage disequilibrium and the search for complex disease genes [J]. Genome Res, 2000, 10(10): 1435-1444. |
| 4 | Giampaoli S, Chillemi G, Valeriani F, et al. The SNPs in the human genetic blueprint era [J]. New Biotechnol, 2013, 30(5): 475-484. |
| 5 | 苏睿, 林峻, 陈鲤群, 等. 高通量自动化SNP检测技术研究进展 [J]. 中国细胞生物学学报, 2019, 41(7): 1412-1422. |
| Su R, Lin J, Chen LQ, et al. Research progress on high-throughput automated SNP detection technology [J]. Chin J Cell Biol, 2019, 41(7): 1412-1422. | |
| 6 | Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors [J]. Proc Natl Acad Sci USA, 1977, 74(12): 5463-5467. |
| 7 | 张微, 冯琳琳, 平昭. 单核苷酸多态性检测技术研究进展 [J]. 生物技术通讯, 2016, 27(6): 879-883. |
| Zhang W, Feng LL, Ping Z. Progress in technologies for single nucleotide polymorphism detection [J]. Lett Biotechnol, 2016, 27(6): 879-883. | |
| 8 | Bloemen M, Rector A, Swinnen J, et al. Fast detection of SARS-CoV-2 variants including Omicron using one-step RT-PCR and Sanger sequencing [J]. J Virol Methods, 2022, 304: 114512. |
| 9 | Liu GL, Xin SY, Geng S, et al. Identification of a novel fusion gene NLRC3-NLRP12 in miiuy croaker (Miichthys miiuy) [J]. Fish Shellfish Immunol, 2023, 136: 108697. |
| 10 | Royo JL, Galán JJ. Pyrosequencing for SNP genotyping [M]//Single Nucleotide Polymorphisms. Totowa, NJ: Humana Press, 2009: 123-133. |
| 11 | Ortola-Vidal A, Schnerr H, Rojmyr M, et al. Quantitative identification of plant Genera in food products using PCR and Pyrosequencing® technology [J]. Food Contr, 2007, 18(8): 921-927. |
| 12 | Ramünke S, Melville L, Rinaldi L, et al. Benzimidazole resistance survey for Haemonchus, Teladorsagia and Trichostrongylus in three European countries using pyrosequencing including the development of new assays for Trichostrongylus [J]. Int J Parasitol Drugs Drug Resist, 2016, 6(3): 230-240. |
| 13 | Park JW, Park IH, Kim JM, et al. Rapid detection of FMO3 single nucleotide polymorphisms using a pyrosequencing method [J]. Mol Med Rep, 2022, 25(2): 48. |
| 14 | Erali M, Wittwer CT. High resolution melting analysis for gene scanning [J]. Methods, 2010, 50(4): 250-261. |
| 15 | Vishnuraj MR, Renuka J, Aravind Kumar N, et al. Differential detection of sheep and goat meat using duplex real-time PCR and high-resolution melt analysis [J]. Food Chem Adv, 2023, 2: 100309. |
| 16 | Forghani F, Wei S, Oh DH. A rapid multiplex real-time PCR high-resolution melt curve assay for the simultaneous detection of Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus in food [J]. J Food Prot, 2016, 79(5): 810-815. |
| 17 | Liu YJ, Singh P, Mustapha A. High-resolution melt curve PCR assay for specific detection of E. coli O157: H7 in beef [J]. Food Contr, 2018, 86: 275-282. |
| 18 | Gibriel AA, Adel O. Advances in ligase chain reaction and ligation-based amplifications for genotyping assays: Detection and applications [J]. Mutat Res, 2017, 773: 66-90. |
| 19 | Ruiz C, Huang J, Giardina S F, et al. Single-molecule detection of cancer mutations using a novel PCR-LDR-qPCR assay [J]. Hum Mutat, 2020, 41(5): 1051-1068.]. |
| 20 | Wang YZ, Xiao JH, Liu LG, et al. Simultaneous detection of hepatitis B virus genotypes and mutations associated with resistance to lamivudine, adefovir, and telbivudine by the polymerase chain reaction-ligase detection reaction [J]. Braz J Infect Dis, 2011, 15(6): 560-566. |
| 21 | Li HF, Shu JT, Du YF, et al. Analysis of the genetic effects of prolactin gene polymorphisms on chicken egg production [J]. Mol Biol Rep, 2013, 40(1): 289-294. |
| 22 | Yang ZX, Lo YT, Quan Z, et al. Application of a modified Tetra-primer ARMS-PCR assay for rapid Panax species identity authentication in ginseng products [J]. Sci Rep, 2023, 13(1): 14396. |
| 23 | Yang H, Yang S, Xia XH, et al. Sensitive detection of a single-nucleotide polymorphism in foodborne pathogens using CRISPR/Cas12a-signaling ARMS-PCR [J]. J Agric Food Chem, 2022, 70(27): 8451-8457. |
| 24 | Xie YY, Ping Y, Yu P, et al. The rs9402373 polymorphism of CTGF gene may not be related to inflammatory bowel disease susceptibility in Chinese population based on ARMS-PCR genotyping [J]. Heliyon, 2023, 9(6): e17003. |
| 25 | Ho UH, Pak SH, Kim K, et al. Efficient screening of SNP in canine OR52N9 and OR9S25 as assistant marker of olfactory ability [J]. J Vet Behav, 2023, 60: 51-55. |
| 26 | Honardoost MA, Tabatabaeian H, Akbari M, et al. Investigation of sensitivity, specificity and accuracy of Tetra primer arms pcr method in comparison with conventional arms pcr, based on sequencing technique outcomes in ivs-ii-i genotyping of beta thalassemia patients [J]. Gene, 2014, 549(1): 1-6. |
| 27 | Wang ZN, Li MJ, Lan XY, et al. Tetra-primer ARMS-PCR identifies the novel genetic variations of bovine HNF-4α gene associating with growth traits [J]. Gene, 2014, 546(2): 206-213. |
| 28 | Xu XY, Hu XG, Ma GD, et al. Detecting fa leptin receptor mutation in Zucker rats with Tetra-primer amplification-refractory mutation system (ARMS)-PCR [J]. Heliyon, 2023, 9(9): e20159. |
| 29 | Ryu WS. Diagnosis and methods [M]//Molecular Virology of Human Pathogenic Viruses. Amsterdam: Elsevier, 2017: 47-62. |
| 30 | Boccacci P, Chitarra W, Schneider A, et al. Single-nucleotide polymorphism (SNP) genotyping assays for the varietal authentication of 'Nebbiolo' musts and wines [J]. Food Chem, 2020, 312: 126100. |
| 31 | Jing QY, Liu SJ, Song Y, et al. TaqMan real-time quantitative PCR for the detection of beef tallow to assess the authenticity of edible oils [J]. Food Contr, 2024, 156: 110139. |
| 32 | Bundidamorn D, Supawasit W, Trevanich S. Taqman® probe based multiplex RT-PCR for simultaneous detection of Listeria monocytogenes, Salmonella spp. and Shiga toxin-producing Escherichia coli in foods [J]. LWT, 2021, 147: 111696. |
| 33 | Hirotsu Y, Maejima M, Shibusawa M, et al. Classification of Omicron BA.1, BA.1.1, and BA.2 sublineages by TaqMan assay consistent with whole genome analysis data [J]. Int J Infect Dis, 2022, 122: 486-491. |
| 34 | Fondevila M, Børsting C, Phillips C, et al. Forensic SNP genotyping with SNaPshot: technical considerations for the development and optimization of multiplexed SNP assays [J]. Forensic Sci Rev, 2017, 29(1): 57-76. |
| 35 | Li L, Li CJ, Zhang YJ, et al. Simultaneous detection of CYP3A5 and MDR1 polymorphisms based on the SNaPshot assay [J]. Clin Biochem, 2011, 44(5-6): 418-422. |
| 36 | Paneto GG, Köhnemann S, Martins JA, et al. A single multiplex PCR and SNaPshot minisequencing reaction of 42 SNPs to classify admixture populations into mitochondrial DNA haplogroups [J]. Mitochondrion, 2011, 11(2): 296-302. |
| 37 | Zhang B, Zhao N, Peng KK, et al. A combination of genome-wide association study screening and SNaPshot for detecting sex-related SNPs and genes in Cynoglossus semilaevis [J]. Comp Biochem Physiol Part D Genomics Proteomics, 2020, 35: 100711. |
| 38 | Yoo E, Haile M, Ko HC, et al. Development of SNP markers for Cucurbita species discrimination [J]. Sci Hortic, 2023, 318: 112089. |
| 39 | Huang CH, Chang MT, Huang MC, et al. Application of the SNaPshot minisequencing assay to species identification in the Lactobacillus casei group [J]. Mol Cell Probes, 2011, 25(4): 153-157. |
| 40 | Cui YB, Xu JM, Cheng MX, et al. Review of CRISPR/Cas9 sgRNA design tools [J]. Interdiscip Sci, 2018, 10(2): 455-465. |
| 41 | Hillary VE, Ceasar SA. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering [J]. Mol Biotechnol, 2023, 65(3): 311-325. |
| 42 | Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering [J]. Science, 2018, 361(6405): 866-869. |
| 43 | Zhou WH, Hu L, Ying LM, et al. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection [J]. Nat Commun, 2018, 9(1): 5012. |
| 44 | Wang XS, Xiong EH, Tian T, et al. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay [J]. ACS Nano, 2020, 14(2): 2497-2508. |
| 45 | Sun X, Wang Y, Zhang L, et al. CRISPR-Cas9 triggered two-step isothermal amplification method for E. coli O157: H7 detection based on a metal-organic framework platform [J]. Anal Chem, 2020, 92(4): 3032-3041. |
| 46 | Yan WX, Hunnewell P, Alfonse LE, et al. Functionally diverse type V CRISPR-cas systems [J]. Science, 2019, 363(6422): 88-91. |
| 47 | Li SY, Cheng QX, Wang JM, et al. CRISPR-Cas12a-assisted nucleic acid detection [J]. Cell Discov, 2018, 4: 20. |
| 48 | Chen JS, Ma EB, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J]. Science, 2018, 360(6387): 436-439. |
| 49 | Wang DS, Chen G, Lyu YF, et al. A CRISPR/Cas12a-based DNAzyme visualization system for rapid, non-electrically dependent detection of Bacillus anthracis [J]. Emerg Microbes Infect, 2022, 11(1): 428-437. |
| 50 | Zhu YY, Liu JL, Liu SN, et al. CRISPR/Cas12a-assisted visible fluorescence for pseudo dual nucleic acid detection based on an integrated chip [J]. Anal Chim Acta, 2023, 1280: 341860. |
| 51 | Wu XL, Zhao Y, Guo CH, et al. RatioCRISPR: a ratiometric biochip based on CRISPR/Cas12a for automated and multiplexed detection of heteroplasmic SNPs in mitochondrial DNA [J]. Biosens Bioelectron, 2023, 241: 115676. |
| 52 | Zhang CQ, Cai ZY, Zhou ZH, et al. CASMART, a one-step CRISPR Cas12a-mediated isothermal amplification for rapid and high-resolution digital detection of rare mutant alleles [J]. Biosens Bioelectron, 2023, 222: 114956. |
| 53 | Teng F, Guo L, Cui TT, et al. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity [J]. Genome Biol, 2019, 20(1): 132. |
| 54 | Li LX, Li SY, Wu N, et al. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation [J]. ACS Synth Biol, 2019, 8(10): 2228-2237. |
| 55 | Wang ZP, Zhong CH. Cas12c-DETECTOR: a specific and sensitive Cas12c-based DNA detection platform [J]. Int J Biol Macromol, 2021, 193(Pt A): 441-449. |
| 56 | Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes [J]. Science, 2018, 362(6416): 839-842. |
| 57 | He YW, Shao SJ, Chen JH. High-fidelity identification of single nucleotide polymorphism by type V CRISPR systems [J]. ACS Sens, 2023, 8(12): 4478-4483. |
| 58 | Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector [J]. Science, 2016, 353(6299): aaf5573. |
| 59 | Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2 [J]. Science, 2017, 356(6336): 438-442. |
| 60 | Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases [J]. Nat Protoc, 2019, 14(10): 2986-3012. |
| 61 | Huang FQ, Shan JH, Liang KS, et al. A new method to detect red spotted grouper neuro necrosis virus (RGNNV) based on CRISPR/Cas13a [J]. Aquaculture, 2022, 555: 738217. |
| 62 | Zhang WH, Jiao YB, Ding CY, et al. Rapid detection of tomato spotted wilt virus with Cas13a in tomato and Frankliniella occidentalis [J]. Front Microbiol, 2021, 12: 745173. |
| 63 | Li LN, Duan CX, Weng JF, et al. A field-deployable method for single and multiplex detection of DNA or RNA from pathogens using Cas12 and Cas13 [J]. Sci China Life Sci, 2022, 65(7): 1456-1465. |
| 64 | Kang TJ, Lu JM, Yu T, et al. Advances in nucleic acid amplification techniques (NAATs): COVID-19 point-of-care diagnostics as an example [J]. Biosens Bioelectron, 2022, 206: 114109. |
| 65 | Guk K, Keem JO, Hwang SG, et al. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex [J]. Biosens Bioelectron, 2017, 95: 67-71. |
| 66 | Balderston S, Taulbee JJ, Celaya E, et al. Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor [J]. Nat Biomed Eng, 2021, 5(7): 713-725. |
| 67 | Zhu YD, Lin YN, Gong B, et al. Dual toeholds regulated CRISPR-Cas12a sensing platform for ApoE single nucleotide polymorphisms genotyping [J]. Biosens Bioelectron, 2024, 255: 116255. |
| 68 | Hu YB, Liao YW, Pan ST, et al. A Triple-Mismatch Differentiating assay exploiting activation and trans cleavage of CRISPR-Cas12a for mutation detection with ultra specificity and sensitivity [J]. Biosens Bioelectron, 2025, 267: 116826. |
| 69 | Jiang T, Guo HZ, Liu YD, et al. A comprehensive genetic variant reference for the Chinese population [J]. Sci Bull, 2024, 69(24): 3820-3825. |
| 70 | Newby GA, Yen JS, Woodard KJ, et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice [J]. Nature, 2021, 595(7866): 295-302. |
| 71 | Wang MY, Liu XJ, Yang JT, et al. CRISPR/Cas12a-based biosensing platform for the on-site detection of single-base mutants in gene-edited rice [J]. Front Plant Sci, 2022, 13: 944295. |
| 72 | Köbölkuti ZA, Cseke K, Benke A, et al. Allelic variation in candidate genes associated with wood properties of cultivated poplars (Populus) [J]. Biol Futur, 2019, 70(4): 286-294. |
| [1] | CHENG Hui-juan, WANG Xin, SHI Xiao-tao, MA Dong-xu, GONG Da-chun, HU Jun-peng, XIE Zhi-wen. Effects of Transcription Factor CREA Knockout on the Morphology and the Secretion of β-glucosidase in Aspergillus niger [J]. Biotechnology Bulletin, 2025, 41(6): 344-354. |
| [2] | ZHOU Qian, TANG Meng-jun, ZHANG Xiao-yan, LU Jun-xian, TANG Xiu-jun, YANG Xing-xing, GAO Yu-shi. Research Progress in the Control of Multidrug Resistant Bacteria Based on in CRISPR-Cas System [J]. Biotechnology Bulletin, 2025, 41(5): 42-51. |
| [3] | GAO Chang, ZHUANG Tian-chi, LI Ning, LIU Yun, GU Peng-fei, ZHAO Xin-yi, JI Ming-hui. Gravity-driven Microfluidic Chip Based on RPA-CRISPR/Cas12a for the Rapid Detection of Mycobacterium tuberculosis [J]. Biotechnology Bulletin, 2025, 41(5): 62-69. |
| [4] | YAO Xue-chun, LI Lei, WANG Zhi-xian, SHENG Chang-zhong, ZHOU Zeqi, TAN Cherie S. A CRISPR-Cas12a-based Detection Method for Respiratory Syncytial Virus [J]. Biotechnology Bulletin, 2025, 41(1): 103-109. |
| [5] | XIAO Yi-meng, YANG Wen, CHENG Yi-yi, LUO Gang. CRISPR-Cas9 Gene Editing Technology and Its Research Progress in Poultry [J]. Biotechnology Bulletin, 2024, 40(5): 38-47. |
| [6] | ZHANG Zu-lin, LIU Fang-fang, ZHOU Qing-niao, ZHAO Rui-qiang, HE Shu-jia, LIN Wen-zhen. Construction and Identification of Huh7 Hepatoma Cell Line with ACE2 Gene Knockout Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(6): 181-188. |
| [7] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
| [8] | HU Xiu-wen, LIU Hua, WANG Yu, TANG Xue-ming, WANG Jin-bin, ZENG Hai-juan, JIANG Wei, LI Hong. Application of CRISPR-Cas System in Nucleic Acid Detection [J]. Biotechnology Bulletin, 2021, 37(9): 266-273. |
| [9] | FU Zhi-qiang, XIONG Yan. Research Progress on Portable Bio-optical Sensors [J]. Biotechnology Bulletin, 2021, 37(3): 219-226. |
| [10] | WANG Kai-kai, WANG Xiao-lu, SU Xiao-yun, ZHANG Jie. Optimization and Application of Double-plasmid CRISPR-Cas9 System in Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(12): 252-264. |
| [11] | LI Xin-shen, HUANG Xiao-mei, WU Shu-xiu, HUANG Rui-rong, WEI Lin-gen, HUA Ju-ling. Rapid Detection of Plant Bacterial Wilt by Loop-mediated Isothermal Amplification [J]. Biotechnology Bulletin, 2021, 37(1): 272-281. |
| [12] | ZHAO Ying, WANG Nan, LU An-xiang, FENG Xiao-yuan, GUO Xiao-jun, LUAN Yun-xia. Application in the Detection of Fungal Toxins by Nucleic Acid Aptamer Lateral Flow Chromatography Analysis Technique [J]. Biotechnology Bulletin, 2020, 36(8): 217-227. |
| [13] | GAO Wei-fang, ZHANG Li-ping, ZHU Peng. Recent Progress on Isothermal Amplification Technology and Its Combination with CRISPR in Rapid Detection of Microorganisms [J]. Biotechnology Bulletin, 2020, 36(5): 22-31. |
| [14] | CHEN Min-jie, TANG Gui-yue, HONG Xiang-na, HAO Pei, JIANG Jing, LI Xuan. Research Progress on CRISPR-Cas13-mediated RNA Editing System [J]. Biotechnology Bulletin, 2020, 36(3): 1-8. |
| [15] | WANG Qi, YAN Chun-lei, GAO Hong-wei, WU Wei, YANG Qing-li. Research Progress of DNA Aptasensors for Foodborne Pathogen Detection [J]. Biotechnology Bulletin, 2020, 36(11): 245-258. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||