Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (4): 21-32.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0890
Previous Articles Next Articles
NIU Ruo-yu1,2,3(
), GAO Zhan1,2, XIONG Xian-peng1, ZHU De1, LUO Hao-tian1,3, MA Xue-yuan1, HU Guan-jing1,3(
)
Received:2024-09-13
Online:2025-04-26
Published:2025-04-25
Contact:
HU Guan-jing
E-mail:niuruoyu@caas.cn;huguanjing@caas.cn
NIU Ruo-yu, GAO Zhan, XIONG Xian-peng, ZHU De, LUO Hao-tian, MA Xue-yuan, HU Guan-jing. Breeding Applications and Prospects of Wild Cotton Germplasm Resources[J]. Biotechnology Bulletin, 2025, 41(4): 21-32.
Fig. 1 Published genomes of Gossypium speciesThe reference genome version ID and release time of 21 diploid and 7 tetraploid species were labeled according to CottonGen[19,21]
杂交组合 Cross combination | 相关性状/QTL Related traits/QTL | 参考文献 Reference |
|---|---|---|
陆地棉 × 达尔文棉 G. hirsutum × G. darwinii | 耐盐性状 抗黄萎病性状 | [ [ |
陆地棉 × 黄褐棉 G. hirsutum × G. mustelinum | 抗黄萎病性状 | [ |
陆地棉 × 澳洲棉 G. hirsutum × G. australe | 抗黄萎病性状 | [ |
陆地棉 × 毛棉 G. hirsutum × G. tomentosum | 11 个耐盐相关 QTL | [ |
陆地棉 × 异常棉 G. hirsutum × G. anomalum | 抗旱性状 | [ |
Table 1 Study on the stress resistance traits of intergeneric hybridization between G. hirsutum L.and wild cotton species
杂交组合 Cross combination | 相关性状/QTL Related traits/QTL | 参考文献 Reference |
|---|---|---|
陆地棉 × 达尔文棉 G. hirsutum × G. darwinii | 耐盐性状 抗黄萎病性状 | [ [ |
陆地棉 × 黄褐棉 G. hirsutum × G. mustelinum | 抗黄萎病性状 | [ |
陆地棉 × 澳洲棉 G. hirsutum × G. australe | 抗黄萎病性状 | [ |
陆地棉 × 毛棉 G. hirsutum × G. tomentosum | 11 个耐盐相关 QTL | [ |
陆地棉 × 异常棉 G. hirsutum × G. anomalum | 抗旱性状 | [ |
| 1 | Yuan DJ, Grover CE, Hu GJ, et al. Parallel and intertwining threads of domestication in allopolyploid cotton [J]. Adv Sci, 2021, 8(10): 2003634. |
| 2 | Hwang YT, Wijekoon C, Kalischuk M, et al. Evolution and management of the Irish potato famine pathogen Phytophthora infestans in Canada and the United States [J]. Am J Potato Res, 2014, 91(6): 579-593. |
| 3 | Ordonez N, Seidl MF, Waalwijk C, et al. Worse comes to worst: bananas and Panama disease—when plant and pathogen clones meet [J]. PLoS Pathog, 2015, 11(11): e1005197. |
| 4 | Mammadov J, Buyyarapu R, Guttikonda SK, et al. Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses [J]. Front Plant Sci, 2018, 9: 886. |
| 5 | Zhu SJ, Reddy N, Jiang YR. Introgression of a gene for delayed pigment gland morphogenesis from Gossypium bickii into upland cotton [J]. Plant Breed, 2005, 124(6): 590-594. |
| 6 | Konan ON, D'Hont A, Baudoin JP, et al. Cytogenetics of a new trispecies hybrid in cotton: [(Gossypium hirsutum L.×G. thurberi Tod.)2 × G. longicalyx Hutch. & Lee [J]. Plant Breed, 2007, 126(2): 176-181. |
| 7 | Nazeer W, Ahmad S, Mahmood K, et al. Introgression of genes for cotton leaf curl virus resistance and increased fiber strength from Gossypium stocksii into upland cotton (G. hirsutum) [J]. Genet Mol Res, 2014, 13(1): 1133-1143. |
| 8 | Wendel JF, Grover CE. Taxonomy and evolution of the cotton genus, Gossypium [M]//Cotton. Madison, WI, USA: American Society of Agronomy, Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc., 2015: 25-44. |
| 9 | Kranthi KR. Cotton production practices: snippets from global data 2017[J]. The ICAC Recorder, 2018, XXXVI(1): 4-14. |
| 10 | Wendel JF, Brubaker CL, Seelanan T. The origin and evolution of Gossypium [M]//Physiology of Cotton. Dordrecht: Springer Netherlands, 2010: 1-18. |
| 11 | Yik CP, Birchfield W. Resistant germplasm in Gossypium species and related plants to Rotylenchulus reniformis [J]. J Nematol, 1984, 16(2): 146-153. |
| 12 | Campbell BT, Chee PW, Lubbers E, et al. Genetic improvement of the pee dee cotton germplasm collection following seventy years of plant breeding [J]. Crop Sci, 2011, 51(3): 955-968. |
| 13 | Zhao FA, Fang W, Xie D, et al. Proteomic identification of differentially expressed proteins in Gossypium thurberi inoculated with cotton Verticillium dahliae [J]. Plant Sci, 2012, 185-186: 176-184. |
| 14 | Cai YF, Cai XY, Wang QL, et al. Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis [J]. Plant Biotechnol J, 2020, 18(3): 814-828. |
| 15 | DeJoode DR, Wendel JF. Genetic diversity and origin of the Hawaiian islands cotton, Gossypium tomentosum [J]. Am J Bot, 1992, 79(11): 1311. |
| 16 | Dong YT, Hu GJ, Yu JW, et al. Salt-tolerance diversity in diploid and polyploid cotton (Gossypium) species [J]. The Plant journal : for cell and molecular biology, 2020,101 (5):1135-1151. |
| 17 | Dong YT, Hu GJ, Grover CE, et al. Parental legacy versus regulatory innovation in salt stress responsiveness of allopolyploid cotton (Gossypium) species [J]. The Plant Journal: for Cell and Molecular Biology, 2022, 111(3): 872-887. |
| 18 | Paterson AH, Wendel JF, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres [J]. Nature, 2012, 492(7429): 423-427. |
| 19 | Yu J, Jung S, Cheng CH, et al. CottonGen: a genomics, genetics and breeding database for cotton research [J]. Nucleic Acids Res, 2014, 42(Database issue): D1229-D1236. |
| 20 | Zhu T, Liang CZ, Meng ZG, et al. CottonFGD: an integrated functional genomics database for cotton [J]. BMC Plant Biol, 2017, 17(1): 101. |
| 21 | Yu J, Jung S, Cheng CH, et al. CottonGen: the community database for cotton genomics, genetics, and breeding research [J]. Plants, 2021, 10(12): 2805. |
| 22 | Yang ZQ, Wang J, Huang YM, et al. CottonMD: a multi-omics database for cotton biological study [J]. Nucleic Acids Res, 2023, 51(D1): D1446-D1456. |
| 23 | Huang G, Bao ZG, Feng L, et al. A telomere-to-telomere cotton genome assembly reveals centromere evolution and a Mutator transposon-linked module regulating embryo development [J]. Nat Genet, 2024, 56(9): 1953-1963. |
| 24 | Hu Y, Chen JD, Fang L, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton [J]. Nat Genet, 2019, 51(4): 739-748. |
| 25 | Wang MJ, Tu LL, Yuan DJ, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense [J]. Nat Genet, 2019, 51(2): 224-229. |
| 26 | Jeffrey Chen Z, Sreedasyam A, Ando A, et al. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement [J]. Nat Genet, 2020, 52(5): 525-533. |
| 27 | Huang G, Wu ZG, Percy RG, et al. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution [J]. Nat Genet, 2020, 52(5): 516-524. |
| 28 | Yang ZE, Gao CX, Zhang YH, et al. Recent progression and future perspectives in cotton genomic breeding [J]. Journal of Integrative Plant Biology, 2023, 65(2): 548-569. |
| 29 | Sreedasyam A, Lovell JT, Mamidi S, et al. Genome resources for three modern cotton lines guide future breeding efforts [J]. Nat Plants, 2024, 10(6): 1039-1051. |
| 30 | He SP, Sun GF, Geng XL, et al. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton [J]. Nat Genet, 2021, 53(6): 916-924. |
| 31 | Li JY, Yuan DJ, Wang PC, et al. Cotton pan-genome retrieves the lost sequences and genes during domestication and selection [J]. Genome Biol, 2021, 22(1): 119. |
| 32 | He X, Qi ZY, Liu ZP, et al. Pangenome analysis reveals transposon-driven genome evolution in cotton [J]. BMC Biol, 2024, 22(1): 92. |
| 33 | Wang XQ, Lu HJ, Zhao Y, et al. A super pan-genome map provides genomic insights into evolution of diploid cotton species [J]. iMetaOmics, 2024, 1(1): e15. |
| 34 | Li JY, Liu ZP, You CY, et al. Convergence and divergence of diploid and tetraploid cotton genomes [J]. Nat Genet, 2024, 56(11): 2562-2573. |
| 35 | Hutchinson JB. Intra-specific differentiation in Gossypium hirsutum [J]. Heredity, 1951, 5(2): 161-193. |
| 36 | Viot CR, Wendel JF. Evolution of the cotton genus,Gossypium, and its domestication in the Americas [J]. Critical Reviews in Plant Sciences, 2023, 42(1): 1-33. |
| 37 | Tyagi P, Gore MA, Bowman DT, et al. Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.) [J]. Theor Appl Genet, 2014, 127(2): 283-295. |
| 38 | Ning WX, Rogers KM, Hsu CY, et al. Origin and diversity of the wild cottons (Gossypium hirsutum) of Mound Key, Florida [J]. Sci Rep, 2024, 14(1): 14046. |
| 39 | Wendel JF, Cronn RC. Polyploidy and the evolutionary history of cotton [M]//Advances in Agronomy. Amsterdam: Elsevier, 2003: 139-186. |
| 40 | Haley AB. Sources and nature of resistance to verticillium wilt in wild races of Gossypium hirsutum [D]. Berkeley: University of California, 1976. |
| 41 | Keerio AA, Shen C, Nie YC, et al. QTL mapping for fiber quality and yield traits based on introgression lines derived from Gossypium hirsutum × G. tomentosum [J]. International Journal of Molecular Sciences, 2018, 19(1). |
| 42 | Wang BH, Liu LM, Zhang D, et al. A genetic map between Gossypium hirsutum and the Brazilian endemic G. mustelinum and its application to QTL mapping [J]. G3, 2016, 6(6): 1673-1685. |
| 43 | Romano GB, Sacks EJ, Stetina SR, et al. Identification and genomic location of a reniform nematode (Rotylenchulus reniformis) resistance locus (Ren ari) introgressed from Gossypium aridum into upland cotton (G. hirsutum) [J]. Theor Appl Genet, 2009, 120(1): 139-150. |
| 44 | Zhai HC, Gong WK, Tan YN, et al. Identification of chromosome segment substitution lines of Gossypium barbadense introgressed in G. hirsutum and quantitative trait locus mapping for fiber quality and yield traits [J]. PLoS One, 2016, 11(9): e0159101. |
| 45 | Li PT, Wang M, Lu QW, et al. Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and chromosome segment substitution lines from G. hirsutum × G. barbadense [J]. BMC Genomics, 2017, 18(1): 705. |
| 46 | Islam MS, Thyssen GN, Jenkins JN, et al. A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton [J]. BMC Genomics, 2016, 17(1): 903. |
| 47 | Li DG, Li ZX, Hu JS, et al. Polymorphism analysis of multi-parent advanced generation inter-cross (MAGIC) populations of upland cotton developed in China [J]. Genet Mol Res, 2016, 15(4): gmr15048759.19. |
| 48 | Yu DL, Ke LP, Zhang DD, et al. Multi-omics assisted identification of the key and species-specific regulatory components of drought-tolerant mechanisms in Gossypium stocksii [J]. Plant Biotechnol J, 2021, 19(9): 1690-1692. |
| 49 | Liu FJ, Cai S, Dai LJ, et al. SR45a plays a key role in enhancing cotton resistance to Verticillium dahliae by alternative splicing of immunity genes [J]. Plant J, 2024, 119(1): 137-152. |
| 50 | Liu FJ, Cai S, Ma ZF, et al. RVE2, a new regulatory factor in jasmonic acid pathway, orchestrates resistance to Verticillium wilt [J]. Plant Biotechnol J, 2023, 21(12): 2507-2524. |
| 51 | Dong YT, Hu GJ, Yu JW, et al. Salt-tolerance diversity in diploid and polyploid cotton (Gossypium) species [J]. Plant J, 2020, 101(5): 1135-1151. |
| 52 | Peng Z, Rehman A, Li X, et al. Comprehensive evaluation and transcriptome analysis reveal the salt tolerance mechanism in semi-wild cotton (Gossypium purpurascens) [J]. Int J Mol Sci, 2023, 24(16): 12853. |
| 53 | Rehman A, Tian CY, He SP, et al. Transcriptome dynamics of Gossypium purpurascens in response to abiotic stresses by Iso-seq and RNA-seq data [J]. Sci Data, 2024, 11(1): 477. |
| 54 | Restrepo-Montoya D, Hulse-Kemp AM, Scheffler JA, et al. Leveraging national germplasm collections to determine significantly associated categorical traits in crops: upland and Pima cotton as a case study [J]. Front Plant Sci, 2022, 13: 837038. |
| 55 | van Zelm E, Zhang YX, Testerink C. Salt tolerance mechanisms of plants [J]. Annu Rev Plant Biol, 2020, 71: 403-433. |
| 56 | 刘军杰. 陆地棉×达尔文氏棉后代种质系产量、纤维品质和抗黄萎病特性研究 [D]. 武汉: 华中农业大学, 2011. |
| Liu JJ. Study on yield, fiber quality and Verticillium wilt resistance of upland cotton × Darwinian cotton offspring germplasm lines [D]. Wuhan: Huazhong Agricultural University, 2011. | |
| 57 | Shehzad M, Zhou ZL, Ditta A, et al. Genome-wide mining and identification of protein kinase gene family impacts salinity stress tolerance in highly dense genetic map developed from interspecific cross between G. hirsutum L. and G. darwinii G. watt [J]. Agronomy, 2019, 9(9): 560. |
| 58 | 肖松华, 刘剑光, 赵君, 等. 棉花远缘杂交创制抗黄萎病新种质 [J]. 棉花学报, 2015, 27(6): 524-533. |
| Xiao SH, Liu JG, Zhao J, et al. Creation of a new resistant germplasm to Verticillium wilt by distant hybridization in upland cotton [J]. Cotton Sci, 2015, 27(6): 524-533. | |
| 59 | Oluoch G, Zheng JY, Wang XX, et al. QTL mapping for salt tolerance at seedling stage in the interspecific cross of Gossypium tomentosum with Gossypium hirsutum [J]. Euphytica, 2016, 209(1): 223-235. |
| 60 | Xu ZZ, Chen JD, Meng S, et al. Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding [J]. Plant Commun, 2022, 3(5): 100350. |
| 61 | Wang PC, Zhang J, Sun L, et al. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system [J]. Plant Biotechnol J, 2018, 16(1): 137-150. |
| 62 | Ge XY, Xu JT, Yang ZE, et al. Efficient genotype-independent cotton genetic transformation and genome editing [J]. Journal of Integrative Plant Biology, 2023, 65(4): 907-917. |
| 63 | Fernie AR, Yan JB. De novo domestication: an alternative route toward new crops for the future [J]. Mol Plant, 2019, 12(5): 615-631. |
| 64 | Wen XP, Chen ZW, Yang ZR, et al. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies [J]. Science China Life Sciences, 2023,66(10):2214-2256. |
| 65 | Lappalainen T, Li YI, Ramachandran S, et al. Genetic and molecular architecture of complex traits [J]. Cell, 2024, 187(5): 1059-1075. |
| 66 | Kuzmin E, Taylor JS, Boone C. Retention of duplicated genes in evolution [J]. Trends in Genetics: TIG, 2021, 38(1): 59-72. |
| 67 | Haque S, Ahmad JS, Clark NM, et al. Computational prediction of gene regulatory networks in plant growth and development [J]. Curr Opin Plant Biol, 2019, 47: 96-105. |
| 68 | Marc Jones D, Vandepoele K. Identification and evolution of gene regulatory networks: insights from comparative studies in plants [J]. Curr Opin Plant Biol, 2020, 54: 42-48. |
| 69 | Springer N, de León N, Grotewold E. Challenges of translating gene regulatory information into agronomic improvements [J]. Trends Plant Sci, 2019, 24(12): 1075-1082. |
| 70 | Tu XY, Mejía-Guerra MK, Valdes Franco JA, et al. Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors [J]. Nat Commun, 2020, 11(1): 5089. |
| 71 | Gaudinier A, Rodriguez-Medina J, Zhang LF, et al. Transcriptional regulation of nitrogen-associated metabolism and growth [J]. Nature, 2018, 563(7730): 259-264. |
| 72 | Chen YM, Guo YW, Guan PF, et al. A wheat integrative regulatory network from large-scale complementary functional datasets enables trait-associated gene discovery for crop improvement [J]. Molecular Plant, 2022, 16(2): 393-414. |
| 73 | Xiong X, Zhu D, Grover C E, et al. Dynamics of duplicated gene regulatory networks governing cotton fiber development following polyploidy[Z]//bioRxiv. 2024: 2024.08.1.607624. |
| 74 | Sun WN, Xia LJ, Deng JW, et al. Evolution and subfunctionalization of CIPK6 homologous genes in regulating cotton drought resistance [J]. Nat Commun, 2024, 15(1): 5733. |
| 75 | Song QX, Zhang TZ, Stelly DM, et al. Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons [J]. Genome Biol, 2017, 18(1): 99. |
| 76 | You JQ, Liu ZP, Qi ZY, et al. Regulatory controls of duplicated gene expression during fiber development in allotetraploid cotton [J]. Nat Genet, 2023, 55(11): 1987-1997. |
| 77 | Guan XY, Pang MX, Nah G, et al. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development [J]. Nat Commun, 2014, 5: 3050. |
| 78 | 华金平, 张成, 易先达, 等. 棉花远缘核质杂种的培育与育种应用 [J]. 湖北农业科学, 2003, 42(4): 25-28. |
| Hua JP, Zhang C, Yi XD, et al. Breeding and breeding use of cotton distant nucleo-cytoplasmic hybrid [J]. Hubei Agric Sci, 2003, 42(4): 25-28. | |
| 79 | 温天旺, 朱宏, 玉坎炳, 等. 陆地棉与四个四倍体棉的遗传渐渗及QTL定位研究进展 [J]. 植物遗传资源学报,2022, 23(2):315-322. |
| Wen TW, Zhu H, Yu KB, et al. Research progress on genetic introgression and QTL mapping in upland cotton and four tetraploid cotton species [J]. Journal of Plant Genetic Resources, 2022, 23(2):315-322. | |
| 80 | Pathak D, Rathore P, Kaur H, et al. Introgression and mapping of cotton leaf curl disease (CLCuD) resistance from wild Gossypium armourianum Kearney into upland cotton (G. hirsutum L.) [J]. Plant Dis, 2024. |
| 81 | Huang JB, Yang L, Yang L, et al. Stigma receptors control intraspecies and interspecies barriers in Brassicaceae [J]. Nature, 2023, 614(7947): 303-308. |
| 82 | Lewis CF, Richmond TR. The genetics of flowering response in cotton. I. fruiting behavior of Gossypium hirsutum var. Marie-Galante in a cross with a variety of cultivated American upland cotton [J]. Genetics, 1957, 42(4): 499-509. |
| 83 | Waddle BM, Lewis CF, Richmond TR. The genetics of flowering response in cotton. III. fruiting behavior of Gossypium hirsutum race latifolium in a cross with a variety of cultivated American upland cotton [J]. Genetics, 1961, 46(4): 427-437. |
| 84 | Kushanov FN, Komilov DJ, Turaev OS, et al. Genetic analysis of mutagenesis that induces the photoperiod insensitivity of wild cotton Gossypium hirsutum Subsp. purpurascens [J]. Plants(Basel), 2022, 11(22): 3012. |
| 85 | Gowda SA, Bourland FM, Kaur B, et al. Genetic diversity and population structure analyses and genome-wide association studies of photoperiod sensitivity in cotton (Gossypium hirsutum L.) [J]. Theoretical and Applied Genetics, 2023, 136(11): 230. |
| 86 | Lewis CF, Richmond TR. The genetics of flowering response in cotton. II. inheritance of flowering response in a Gossypium barbadense cross [J]. Genetics, 1960, 45(1): 79-85. |
| 87 | Zhu LL. Genetic diversity analysis and mapping of fiber quality and flowering time traits in tetraploid cotton [D]. North Carolina: North Carolina State University, 2019. |
| 88 | Zhu LL, Gowda SA, Kuraparthy V. Fine mapping and targeted genomic analyses of photoperiod-sensitive gene (GB_PPD1) in Pima cotton (Gossypium barbadense L.) [J]. Crop Sci, 2024, 64(3): 1756-1771. |
| 89 | Grover CE, Zhu X, Grupp KK, et al. Molecular confirmation of species status for the allopolyploid cotton species, Gossypium ekmanianum Wittmack [J]. Genet Resour Crop Evol, 2015, 62(1): 103-114. |
| 90 | Li X, Wu YL, Chi HB, et al. Genomewide identification and characterization of the genes involved in the flowering of cotton [J]. Int J Mol Sci, 2022, 23(14): 7940. |
| 91 | Zhang R, Ding J, Liu CX, et al. Molecular evolution and phylogenetic analysis of eight COL superfamily genes in group I related to photoperiodic regulation of flowering time in wild and domesticated cotton (Gossypium) species [J]. PLoS One, 2015, 10(2): e0118669. |
| 92 | 顾家琦, 朱福慧, 谢沛豪, 等. 棉属光敏色素PHY基因家族的全基因组鉴定与驯化选择分析 [J]. 植物学报, 2024, 59(1): 34-53. |
| Gu JQ, Zhu FH, Xie PH, et al. Genome-wide identification and domestication analysis of the phytochrome PHY gene family in Gossypium [J]. Chin Bull Bot, 2024, 59(1): 34-53. | |
| 93 | Zhong Y, Liu CX, Qi XL, et al. Mutation of ZmDMP enhances haploid induction in maize [J]. Nat Plants, 2019, 5(6): 575-580. |
| 94 | Zhong Y, Chen BJ, Li MR, et al. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis [J]. Nat Plants, 2020, 6(5): 466-472. |
| 95 | Zhong Y, Chen BJ, Wang D, et al. In vivo maternal haploid induction in tomato [J]. Plant Biotechnology Journal, 2021, 20(2): 250-252. |
| 96 | Turcotte EL, Feaster CV. Haploids: high-frequency production from single-embryo seeds in a line of Pima cotton [J]. Science, 1963, 140(3574): 1407-1408. |
| 97 | Long L, Feng YM, Shang SZ, et al. In vivo maternal haploid induction system in cotton [J]. Plant Physiol, 2024, 194(3): 1286-1289. |
| [1] | DING Ruo-xi, DOU Shuo, AN Ye-zhi, KONG Wen-hui, GUO Wen-jing, ZHANG Dong-mei, WANG Xing-fen, MA Zhi-ying, WU Li-zhu. Extended Research on the Application of VIGS Technology in the Whole Growth Cycle of Cotton [J]. Biotechnology Bulletin, 2025, 41(2): 58-64. |
| [2] | HOU Wen-ting, SUN Lin, ZHANG Yan-jun, DONG He-zhong. Application of Gene-editing Technology for Germplasm Innovation and Genetic Improvement in Cotton [J]. Biotechnology Bulletin, 2024, 40(7): 68-77. |
| [3] | WANG Juan, WANG Xin, TIAN Qin, MA Xiao-mei, ZHOU Xiao-feng, LI Bao-cheng, DONG Cheng-guang. Association Analysis and Exploration of Elite Alleles of Plant Architecture Traits in Gossypium hirsutum L. [J]. Biotechnology Bulletin, 2024, 40(3): 146-154. |
| [4] | LOU Hui, ZHU Jin-cheng, YANG Yang, ZHANG Wei. Effects of Root Exudates in Resistant and Susceptible Varieties of Cotton on the Growths and Gene Expressions of Fusarium oxysporum [J]. Biotechnology Bulletin, 2023, 39(9): 156-167. |
| [5] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
| [6] | WEI Ting-liu, MIAO Hua-biao, WU Qian, HUANG Zun-xi. Heterologous Expression, Enzymatic Characterization of Laccase BmLac and Degradation of Gossypol by It [J]. Biotechnology Bulletin, 2023, 39(12): 320-328. |
| [7] | DENG Jia-hui, LEI Jian-feng, ZHAO Yi, LIU Min, HU Zi-yao, YOU Yang-zi, SHAO Wu-kui, LIU Jian-fei, LIU Xiao-dong. Construction of a New Mini Genome Editing System Based on Csy4 and MCP [J]. Biotechnology Bulletin, 2023, 39(10): 68-79. |
| [8] | ZHU Jin-cheng, YANG Yang, LOU Hui, ZHANG Wei. Regulation of Fusarium wilt Resistance in Cotton by Exogenous Melatonin [J]. Biotechnology Bulletin, 2023, 39(1): 243-252. |
| [9] | LI Xiu-qing, HU Zi-yao, LEI Jian-feng, DAI Pei-hong, LIU Chao, DENG Jia-hui, LIU Min, SUN Ling, LIU Xiao-dong, LI Yue. Cloning and Functional Analysis of Gene GhTIFY9 Related to Cotton Verticillium Wilt Resistance [J]. Biotechnology Bulletin, 2022, 38(8): 127-134. |
| [10] | YANG Ya-jie, LI Yu-ying, SHEN Zhuang-zhuang, CHEN Tian, RONG Er-hua, WU Yu-xiang. Selection and Character Identification for Autopolyploid Progenies of Gossypium herbaceum [J]. Biotechnology Bulletin, 2022, 38(5): 64-73. |
| [11] | ZHAO Zeng-qiang, GUO Wen-ting, ZHANG Xi, LI Xiao-ling, ZHANG Wei. Cloning and Functional Analysis of GhERF5-4D Gene Related to Fusarium oxysporum Resistance in Cotton [J]. Biotechnology Bulletin, 2022, 38(4): 193-201. |
| [12] | WANG Rong-hua, WANG Shu-bin, ZHANG Zhi-gang, ZHAO Zhi-zhong, LI Qiao-yun, WANG Li-hua, LIU Shuan-tao. Genome-wide Characterization of KCS Gene Family in Brassica rapa and Their Expression Profiling in Waxy Near-isogenic Lines [J]. Biotechnology Bulletin, 2022, 38(4): 86-96. |
| [13] | ZHAO Yi, LEI Jian-feng, LIU Min, HU Zi-yao, DAI Pei-hong, LIU Chao, LI Yue, LIU Xiao-dong. Research on the Carrying Capacity of CLCrV-mediated VIGE System [J]. Biotechnology Bulletin, 2022, 38(11): 210-219. |
| [14] | LIU Xiang-dong, WU Jin-wen, SHAHID Muhammad Qasim. Development of Neo-tetraploid Rice and Research Progress on Its Heterosis Mechanism [J]. Biotechnology Bulletin, 2022, 38(1): 44-50. |
| [15] | HU Zi-yao, DAI Pei-hong, LIU Chao, Madina Mulati, WANG Qian, Wugalihan Abuduwili, ZHAO Yi, SUN Ling, XU Shi-jia, LI Yue. Molecular Cloning,Expression and VIGS Construction of a Small GTP-binding Protein Gene GhROP3 in Gossypium hirsutum [J]. Biotechnology Bulletin, 2021, 37(9): 106-113. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||