Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (6): 335-343.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1126
MI Chun-xia1(
), Shu XU1, WANG Shou-xian2, LIU Yu2, SONG Qing-gang2, SONG Shuang2(
)
Received:2024-11-21
Online:2025-06-26
Published:2025-06-30
Contact:
SONG Shuang
E-mail:swxmcx@126.com;songshuang@baafs.net.cn
MI Chun-xia, Shu XU, WANG Shou-xian, LIU Yu, SONG Qing-gang, SONG Shuang. Effect of Soil-casing Cultivation of Pleurotus ostreatus on Antibiotic Resistance Genes in Soil[J]. Biotechnology Bulletin, 2025, 41(6): 335-343.
检测项目 Detected item | 抗性分类 Resistance classification | 检出数量 Number of detections | |
|---|---|---|---|
| S-CS | S-CG | ||
| ARGs | Aminoglycoside | 24±1 | 26±1 |
| β-Lactamase | 24±4 | 20±1 | |
| MLSB | 28±2 | 26±1 | |
| Multidrug | 22±2 | 18±0 | |
| Phenicols | 7±1 | 7±0 | |
| Sulfonamide | 6±4 | 6±1 | |
| Tetracycline | 26±2 | 27±0 | |
| Vancomycin | 9±2 | 7±3 | |
| MGEs | MGE | 10±0 | 9±1 |
| 合计 Total | 156±7 | 146±5 | |
Table 1 Number of ARGs and MGEs detected in soil samples
检测项目 Detected item | 抗性分类 Resistance classification | 检出数量 Number of detections | |
|---|---|---|---|
| S-CS | S-CG | ||
| ARGs | Aminoglycoside | 24±1 | 26±1 |
| β-Lactamase | 24±4 | 20±1 | |
| MLSB | 28±2 | 26±1 | |
| Multidrug | 22±2 | 18±0 | |
| Phenicols | 7±1 | 7±0 | |
| Sulfonamide | 6±4 | 6±1 | |
| Tetracycline | 26±2 | 27±0 | |
| Vancomycin | 9±2 | 7±3 | |
| MGEs | MGE | 10±0 | 9±1 |
| 合计 Total | 156±7 | 146±5 | |
Fig. 1 Effects of soil-casing cultivation of P. ostreatus on the relative and absolute abundances of ARGs and MGEs in soilA: Total relative abundance of ARGs and MGEs. B: Relative abundance of ARGs in different resistance classifications. C: Total absolute abundance of ARGs, MGEs and 16S rRNAs. D: Absolute abundance of ARGs in different resistance classifications. *, ** and *** indicate significant differences at the P<0.05, P<0.01 and P<0.001 levels, respectively
Fig. 3 Changes in soil bacterial communities before and after the formation of fruiting bodies of P. ostreatus undersoil-casing cultivationA: Shannon index. B: Chao 1 index. C: Venn diagram of genus level before and after the formation of fruiting bodies. D: Abundance of bacterial communities at genus level. E: PCoA analysis of bacterial communities based on Bray-Curtis distance, ellipse boundaries indicate 95% confidence intervals of the corresponding groups
Fig. 5 Factors affecting the changes in ARGs of soil by soil-casing cultivation of P. ostreatusA: Co-occurrence analysis of ARGs, MGEs and genus-level bacterial communities based on Pearson correlation (ρ>0.8, P<0.01). Red and green lines indicate positive and negative correlations, respectively. The size of nodes is proportional to the number of connections. Red nodes indicate bacterial genera, yellow nodes indicate MGEs, and green nodes indicate ARGs. B: VPA analysis of changes in ARGs based on bacterial communities and MGEs
| 1 | 公丕成, 蔡辰, 张博, 等. 我国抗生素菌渣资源化研究新进展 [J]. 环境工程, 2017, 35(5): 107-111. |
| Gong PC, Cai C, Zhang B, et al. New progress of reseach on resource of antibiotic bacterial residue in China [J]. Environ Eng, 2017, 35(5): 107-111. | |
| 2 | Peng S, Li HJ, Song D, et al. Influence of zeolite and superphosphate as additives on antibiotic resistance genes and bacterial communities during factory-scale chicken manure composting [J]. Bioresour Technol, 2018, 263: 393-401. |
| 3 | Tiseo K, Huber L, Gilbert M, et al. Global trends in antimicrobial use in food animals from 2017 to 2030 [J]. Antibiotics, 2020, 9(12): 918. |
| 4 | Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century [J]. Perspect Medicin Chem, 2014, 6: 25-64. |
| 5 | Wu J, Wang JY, Li ZT, et al. Antibiotics and antibiotic resistance genes in agricultural soils: a systematic analysis [J]. Crit Rev Environ Sci Technol, 2023, 53(7): 847-864. |
| 6 | Shawver S, Wepking C, Ishii S, et al. Application of manure from cattle administered antibiotics has sustained multi-year impacts on soil resistome and microbial community structure [J]. Soil Biol Biochem, 2021, 157: 108252. |
| 7 | Zhu YG, Johnson TA, Su JQ, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms [J]. Proc Natl Acad Sci USA, 2013, 110(9): 3435-3440. |
| 8 | Sun YM, Guo YJ, Shi MM, et al. Effect of antibiotic type and vegetable species on antibiotic accumulation in soil-vegetable system, soil microbiota, and resistance genes [J]. Chemosphere, 2021, 263: 128099. |
| 9 | Zeng QT, Sun JT, Zhu LZ. Occurrence and distribution of antibiotics and resistance genes in greenhouse and open-field agricultural soils in China [J]. Chemosphere, 2019, 224: 900-909. |
| 10 | Cui EP, Cui BJ, Fan XY, et al. Ryegrass (Lolium multiflorum L.) and Indian mustard (Brassica juncea L.) intercropping can improve the phytoremediation of antibiotics and antibiotic resistance genes but not heavy metals [J]. Sci Total Environ, 2021, 784: 147093. |
| 11 | Liang YT, Pei M, Wang DD, et al. Improvement of soil ecosystem multifunctionality by dissipating manure-induced antibiotics and resistance genes [J]. Environ Sci Technol, 2017, 51(9): 4988-4998. |
| 12 | 张丹丹, 李若兰, 李厚禹, 等. 外源抗生素抗性基因在农田系统中的定殖机制综述 [J]. 农业环境科学学报, 2024, 43(10): 2191-2199. |
| Zhang DD, Li RL, Li HY, et al. Colonization mechanism of exogenous antibiotic resistance genes in agricultural systems: a review [J]. J Agro Environ Sci, 2024, 43(10): 2191-2199. | |
| 13 | Bahram M, Hildebrand F, Forslund SK, et al. Structure and function of the global topsoil microbiome [J]. Nature, 2018, 560(7717): 233-237. |
| 14 | Fermor TR, Wood DA. Degradation of bacteria by Agaricus bisporus and other fungi [J]. Microbiology, 1981, 126(2): 377-387. |
| 15 | Holatko J, Brtnicky M, Mustafa A, et al. Effect of digestate modified with amendments on soil health and plant biomass under varying experimental durations [J]. Materials, 2023, 16(3): 1027. |
| 16 | Liu CS, Zhao DF, Ma WJ, et al. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp [J]. Appl Microbiol Biotechnol, 2016, 100(3): 1421-1426. |
| 17 | Muloi D, Ward MJ, Pedersen AB, et al. Are food animals responsible for transfer of antimicrobial-resistant Escherichia coli or their resistance determinants to human populations? A systematic review [J]. Foodborne Pathog Dis, 2018, 15(8): 467-474. |
| 18 | Li YC, Deng XH, Zhang N, et al. Rhizosphere suppression hinders antibiotic resistance gene (ARG) spread under bacterial invasion [J]. One Health, 2023, 16: 100481. |
| 19 | Baars JJP, Scholtmeijer K, Sonnenberg ASM, et al. Critical factors involved in primordia building in Agaricus bisporus: a review [J]. Molecules, 2020, 25(13): 2984. |
| 20 | Eastwood DC, Herman B, Noble R, et al. Environmental regulation of reproductive phase change in Agaricus bisporus by 1-octen-3-ol, temperature and CO₂ [J]. Fungal Genet Biol, 2013, 55: 54-66. |
| 21 | Lucas D, Badia-Fabregat M, Vicent T, et al. Fungal treatment for the removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewater [J]. Chemosphere, 2016, 152: 301-308. |
| 22 | Sen KY, Llewellyn M, Taheri B, et al. Mechanism of fungal remediation of wetland water: Stropharia rugosoannulata as promising fungal species for the development of biofilters to remove clinically important pathogenic and antibiotic resistant bacteria in contaminated water [J]. Front Microbiol, 2023, 14: 1234586. |
| 23 | Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning [J]. Nat Rev Microbiol, 2018, 16(9): 567-576. |
| 24 | 石丽红, 孙梅, 唐海明, 等. 不同施肥模式下稻田土壤氮组分及微生物多样性研究进展 [J]. 中国农学通报, 2022, 38(27): 106-110. |
| Shi LH, Sun M, Tang HM, et al. Soil nitrogen fractions and microbial diversity in paddy field under different fertilization modes: a review [J]. Chin Agric Sci Bull, 2022, 38(27): 106-110. | |
| 25 | Muszyńska B, Lazur J, Dobosz K. Biological significance of edible mushrooms in mycoremediation [J]. Postepy Biochem, 2017, 63(4): 326-334. |
| 26 | Yadav P, Rai SN, Mishra V, et al. Mycoremediation of environmental pollutants: a review with special emphasis on mushrooms [J]. Environ Sustain, 2021, 4(4): 605-618. |
| 27 | Hoffman MT, Elizabeth Arnold A. Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes [J]. Appl Environ Microbiol, 2010, 76(12): 4063-4075. |
| 28 | Wu WX, Lu HP, Sastri A, et al. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities [J]. ISME J, 2018, 12(2): 485-494. |
| 29 | Song S, Han ML, Wang XM, et al. Fate of antibiotic resistance genes in cultivation substrate and its association with bacterial communities throughout commercial production of Agaricus bisporus [J]. Ecotoxicol Environ Saf, 2023, 249: 114360. |
| [1] | WANG Zheng-yan, FAN Fang-lei, YE Tian-wei, LUO Qiong, ZHAO Ya-ru. Applied Research of Insect Symbiotic Bacteria in Biodegradation of Plastics and Pesticides [J]. Biotechnology Bulletin, 2025, 41(4): 33-46. |
| [2] | WEN Shao-fu, JIANG Run-hai, ZHU Cheng-qiang, ZHANG Mei, YU Xiao-qin, YANG Jie-hui, YANG Xiao-rong, HOU Xiu-li. Effects of Phosphate-solubilizing Bacteria on the Rhizosphere Soil Properties and Microbial Community Structure of Maize in Lead-contaminated Soil [J]. Biotechnology Bulletin, 2024, 40(9): 225-237. |
| [3] | GAO Yu-kun, ZHANG Jian-dong, YANG Pu-yuan, CHEN Dong-ming, WANG Zhi-bo, TIAN Yi-jin, Zakey Eldinn. E. A. Khlid, CUI Jiang-hui, CHANG Jin-hua. Responses of Sorghum Rhizosphere Soil Bacterial Communities to Salt Stress [J]. Biotechnology Bulletin, 2024, 40(4): 203-216. |
| [4] | ZHANG Hua-xiang, XU Xiao-ting, ZHENG Yun-ting, XIAO Chun-qiao. Roles of Phosphate-solubilizing Microorganisms in the Passivation and Phytoremediation of Heavy Metal Contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(3): 52-58. |
| [5] | GAO Hui-hui, JIA Chen-bo, HAN Qin, SU Jian-yu, XU Chun-yan. Microbiological Mechanism of Root Rot of Lycium barbarum Ningqi-7 [J]. Biotechnology Bulletin, 2022, 38(12): 244-251. |
| [6] | YANG Zong-zheng, ZHAO Xiao-yu, LIU Dan, XU Wen-shuai, WU Zhi-guo. Bioremediation of Cr(VI)-contaminated Farmland Soil by Microbacterium sp. BD6 [J]. Biotechnology Bulletin, 2021, 37(10): 81-90. |
| [7] | GUO Wei, XUE Shuai, ZHANG Zhe-chao, DIAO Feng-wei, HU Jie, ZHANG Min, LIU Mei-chun, DING Sheng-li, JIA Bing-bing, SHI Zhong-qi. Research Progress on Bioremediation of Saline-alkali Grassland:A Review [J]. Biotechnology Bulletin, 2020, 36(7): 200-208. |
| [8] | YUE Li-xiao, LI Deng-yun, ZHANG Jing-jing, TONG Lei. Isolation and Application Potential Exploration of a Diuron-degrading Bacterium [J]. Biotechnology Bulletin, 2020, 36(6): 110-119. |
| [9] | ZHANG Yong-min, WANG Tian-hui, WANG Ping. Identification and Degradation Characteristics of Microbial Community Degrading Phenanthrene from Surface Sediments [J]. Biotechnology Bulletin, 2020, 36(6): 128-135. |
| [10] | WU Xue-ling, ZHOU Xiang-yu, WU Xiao-yan, LUO Kui, GU Yi-chao, ZHOU Han, LIAO Wan-qing, ZENG Wei-min. Construction of Tetracycline-degrading Bacterial Co-culture System and Community Analysis of Wastewater Remediation [J]. Biotechnology Bulletin, 2020, 36(10): 116-126. |
| [11] | ZHANG Guang-zhi, WANG Jia-ning, WU Xiao-qing, ZHOU Fang-yuan, ZHANG Xin-jian, ZHAO Xiao-yan, XIE Xue-ying, ZHOU Hong-zi. Diversity and Functional Activity of Trichoderma in the Rhizosphere Soil from Facility Tomato Production [J]. Biotechnology Bulletin, 2018, 34(4): 179-185. |
| [12] | TIAN Lin, ZHANG Xun. Study on the Changes of Soil Microbial Community Structure in Farmland by Estrone Stress [J]. Biotechnology Bulletin, 2017, 33(6): 230-236. |
| [13] | FENG Yan-mei, FAN Xing-hui, ZHAN Hui, TENG Shi-yu, YANG Fang, CHEN Shao-hua. Research Progress on Ecotoxicity and Microbial Degradation of Strobilurin Fungicides [J]. Biotechnology Bulletin, 2017, 33(10): 52-58. |
| [14] | WEI Zheng1, FENG Wei-min1, SHI Yan-hua2, REN Lei1, YAN Yan-chun1. Isolation,Identification and Degradative Properties of Cyfluthrin-degrading Bacterial Strain [J]. Biotechnology Bulletin, 2016, 32(9): 114-122. |
| [15] | Zhang Hairong, Tang Jingchun, Sun Kejing, Zhang Qingmin. Isolation and Identification of Saline-alkaline Tolerant Hydrocarbon-degrading Strains and Study on Their Saline-alkaline Tolerant Characteristics [J]. Biotechnology Bulletin, 2015, 31(1): 151-159. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||