Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (7): 172-180.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0043
Previous Articles Next Articles
HUANG Dan-dan1(
), WU Yun-yi1, ZOU Jian-hua1, YU Ting1, ZHU Yan-hui2, YANG Mei-hong1, DONG Wen-li1, GAO Dong-li1(
)
Received:2025-01-12
Online:2025-07-26
Published:2025-07-22
Contact:
GAO Dong-li
E-mail:yeee_hkx@163.com;gdongli@126.com
HUANG Dan-dan, WU Yun-yi, ZOU Jian-hua, YU Ting, ZHU Yan-hui, YANG Mei-hong, DONG Wen-li, GAO Dong-li. Cloning and Interaction Analysis of StPTST2a Gene in Potato[J]. Biotechnology Bulletin, 2025, 41(7): 172-180.
| 引物名称Primer name | 引物序列 Primer sequence (5′-3′) | 引物用途 Primer usage |
|---|---|---|
| pMAL-C2X-StPTST2a-F | GGATCGAGGGAAGGATTTCAATGGTTTTGACCCAGTTCGC | 体外淀粉结合实验 |
| pMAL-C2X-StPTST2a-R | CAGGTCGACTCTAGAGGATCCTTATGTGACAATGAGAAGATT | In vitro starch-binding assays |
| pGBKT7-StPTST2a-F | CATATGGCCATGGAGGCCATGGTTTTGACCCAGTTCG | 酵母双杂交实验 |
| pGBKT7-StPTST2a-R | CTAGTTATGCGGCCGCTGCAGTTATGTGACAATGAGAAG | Yeast two-hybrid assays |
| pGADT7-StSS1-F | CATATGGCCATGGAGGCCAGTATGGGGTCTCTGCAAACAC | 酵母双杂交实验 |
| pGADT7-StSS1-R | CGATGCCCACCCGGGTGTCATCTGACATATGGAGGATC | Yeast two-hybrid assays |
| pGADT7-StSS2-F | CATATGGCCATGGAGGCCAGTATGGAGAATTCCATTCTTC | 酵母双杂交实验 |
| pGADT7-StSS2-R | CGATGCCCACCCGGGTGTCACCACTGATACTTAGCAG | Yeast two-hybrid assays |
| pGADT7-StSS3-F | CATATGGCCATGGAGGCCAGTATGGACTCACTTACAGTTCT | 酵母双杂交实验 |
| pGADT7-StSS3-R | CGATGCCCACCCGGGTGCTATTCTAACTTTCTAGCAGC | Yeast two-hybrid assays |
| pGADT7-StSS4-F | 酵母双杂交实验 | |
| pGADT7-StSS4-R | Yeast two-hybrid assays | |
| pGADT7-StSS5-F | 酵母双杂交实验 | |
| pGADT7-StSS5-R | Yeast two-hybrid assays | |
| pGADT7-StSS6-F | CATGGAGGCCAGTATGGATTTCACATCCGGCCTGTC | 酵母双杂交实验 |
| pGADT7-StSS6-R | CGATGCCCACCCGGGTGTCAAAGCAAGTGACGTCTAAG | Yeast two-hybrid assays |
| pGADT7-StISA1.1-F | ATGGCCATGGAGGCCAGTATGGTACGGCAGTTCATCAA | 酵母双杂交实验 |
| pGADT7-StISA1.1-R | CGATGCCCACCCGGGTGCTATGCATCATCAGCAGATG | Yeast two-hybrid assays |
| pCAMBIA-nLUC-StPTST2a-F | GAACAGGGGGACGAGCTCATGGTTTTGACCCAGTTCG | 荧光素酶互补实验 |
| pCAMBIA-nLUC-StPTST2a-R | CCCGGGACGCGTACGAGATCTGTGTGACAATGAGAAGATTA | Luciferase complementation assays |
| pCAMBIA-cLUC-StSS4-F | CTCGTACGCGTCCCGGGGCATGGAGATGAAGATCTCC | 荧光素酶互补实验 |
| pCAMBIA-cLUC-StSS4-R | CGTCCTTGTAGTCCATTTGTTTCAACTACGACTTGCAGCTCTTGC | Luciferase complementation assays |
| pCAMBIA-cLUC-StSS6-F | CTCGTACGCGTCCCGGGGCATGGATTTCACATCCGG | 荧光素酶互补实验 |
| pCAMBIA-cLUC-StSS6-R | GTCCTTGTAGTCCATTTGTTTCAAAGCAAGTGACGTCTAAGTAC | Luciferase complementation assays |
| pCAMBIA-cLUC-StISA1.1-F | GTACGCGTCCCGGGGCATGGTACGGCAGTTCAT | 荧光素酶互补实验 |
| pCAMBIA-cLUC-StISA1.1-R | CGTCCTTGTAGTCCATTTGTTCTATGCATCATCAGCAGATGATAG | Luciferase complementation assays |
| qPCR-StPTST2a-F | CCAGCTTCCTCATCTGGTAGATC | 荧光定量PCR |
| qPCR-StPTST2a-R | CATGTCGTGAGGCTTCCATTTTT | Quantitative real-time PCR |
Table 1 Primers used for molecular experiments
| 引物名称Primer name | 引物序列 Primer sequence (5′-3′) | 引物用途 Primer usage |
|---|---|---|
| pMAL-C2X-StPTST2a-F | GGATCGAGGGAAGGATTTCAATGGTTTTGACCCAGTTCGC | 体外淀粉结合实验 |
| pMAL-C2X-StPTST2a-R | CAGGTCGACTCTAGAGGATCCTTATGTGACAATGAGAAGATT | In vitro starch-binding assays |
| pGBKT7-StPTST2a-F | CATATGGCCATGGAGGCCATGGTTTTGACCCAGTTCG | 酵母双杂交实验 |
| pGBKT7-StPTST2a-R | CTAGTTATGCGGCCGCTGCAGTTATGTGACAATGAGAAG | Yeast two-hybrid assays |
| pGADT7-StSS1-F | CATATGGCCATGGAGGCCAGTATGGGGTCTCTGCAAACAC | 酵母双杂交实验 |
| pGADT7-StSS1-R | CGATGCCCACCCGGGTGTCATCTGACATATGGAGGATC | Yeast two-hybrid assays |
| pGADT7-StSS2-F | CATATGGCCATGGAGGCCAGTATGGAGAATTCCATTCTTC | 酵母双杂交实验 |
| pGADT7-StSS2-R | CGATGCCCACCCGGGTGTCACCACTGATACTTAGCAG | Yeast two-hybrid assays |
| pGADT7-StSS3-F | CATATGGCCATGGAGGCCAGTATGGACTCACTTACAGTTCT | 酵母双杂交实验 |
| pGADT7-StSS3-R | CGATGCCCACCCGGGTGCTATTCTAACTTTCTAGCAGC | Yeast two-hybrid assays |
| pGADT7-StSS4-F | 酵母双杂交实验 | |
| pGADT7-StSS4-R | Yeast two-hybrid assays | |
| pGADT7-StSS5-F | 酵母双杂交实验 | |
| pGADT7-StSS5-R | Yeast two-hybrid assays | |
| pGADT7-StSS6-F | CATGGAGGCCAGTATGGATTTCACATCCGGCCTGTC | 酵母双杂交实验 |
| pGADT7-StSS6-R | CGATGCCCACCCGGGTGTCAAAGCAAGTGACGTCTAAG | Yeast two-hybrid assays |
| pGADT7-StISA1.1-F | ATGGCCATGGAGGCCAGTATGGTACGGCAGTTCATCAA | 酵母双杂交实验 |
| pGADT7-StISA1.1-R | CGATGCCCACCCGGGTGCTATGCATCATCAGCAGATG | Yeast two-hybrid assays |
| pCAMBIA-nLUC-StPTST2a-F | GAACAGGGGGACGAGCTCATGGTTTTGACCCAGTTCG | 荧光素酶互补实验 |
| pCAMBIA-nLUC-StPTST2a-R | CCCGGGACGCGTACGAGATCTGTGTGACAATGAGAAGATTA | Luciferase complementation assays |
| pCAMBIA-cLUC-StSS4-F | CTCGTACGCGTCCCGGGGCATGGAGATGAAGATCTCC | 荧光素酶互补实验 |
| pCAMBIA-cLUC-StSS4-R | CGTCCTTGTAGTCCATTTGTTTCAACTACGACTTGCAGCTCTTGC | Luciferase complementation assays |
| pCAMBIA-cLUC-StSS6-F | CTCGTACGCGTCCCGGGGCATGGATTTCACATCCGG | 荧光素酶互补实验 |
| pCAMBIA-cLUC-StSS6-R | GTCCTTGTAGTCCATTTGTTTCAAAGCAAGTGACGTCTAAGTAC | Luciferase complementation assays |
| pCAMBIA-cLUC-StISA1.1-F | GTACGCGTCCCGGGGCATGGTACGGCAGTTCAT | 荧光素酶互补实验 |
| pCAMBIA-cLUC-StISA1.1-R | CGTCCTTGTAGTCCATTTGTTCTATGCATCATCAGCAGATGATAG | Luciferase complementation assays |
| qPCR-StPTST2a-F | CCAGCTTCCTCATCTGGTAGATC | 荧光定量PCR |
| qPCR-StPTST2a-R | CATGTCGTGAGGCTTCCATTTTT | Quantitative real-time PCR |
Fig. 1 Sequence analysis, homologous gene comparison and expression pattern analysis of StPTST2aA: A structural diagram of the StPTST2a and StPTST2b protein. The coiled-coil (CC) domain is marked in gray, the CBM domain is marked in blue, and the sequence length is labeled above. B: An amino acid sequence alignment of StPTST2a and its homologous genes. The CC and CBM domain of StPTST2a are labeled below. C: The transcription level of StPTST2a in various tissues of potato CIP065
Fig. 2 StPTST2a protein binds to starch in vitroA: The recombinant fusion protein StPTST2a-MBP and empty MBP protein were subjected to SDS-PAGE detection and stained with Coomassie Brilliant Blue (CBB). The asterisk indicates the fusion protein StPTST2a-MBP. B: The recombinant fusion protein StPTST2a-MBP and empty MBP protein were incubated with starch separately, and both the supernatant (S) and pellet (P) from each sample were detected with an MBP antibody
基因 Gene | 基因号 Gene ID | 花 Flower | 叶 Leaf | 叶柄 Petiole | 茎 Stem | 匍匐茎Stolon | 发育块茎Young tuber | 成熟块茎 Mature tuber |
|---|---|---|---|---|---|---|---|---|
| StSS1 | PGSC0003DMG402018552 | 25.61 | 63.81 | 33.58 | 22.92 | 14.46 | 19.21 | 14.80 |
| StSS2 | PGSC0003DMG400001328 | 21.37 | 59.03 | 37.83 | 50.03 | 45.99 | 124.37 | 207.38 |
| StSS3 | PGSC0003DMG400016481 | 9.03 | 18.75 | 15.66 | 10.55 | 10.48 | 35.72 | 40.04 |
| StSS4 | PGSC0003DMG400008322 | 10.81 | 6.04 | 7.51 | 6.26 | 14.39 | 8.27 | 4.13 |
| StSS5 | PGSC0003DMG400030619 | 3.71 | 1.25 | 1.42 | 3.84 | 14.25 | 42.0 | 57.44 |
| StSS6 | PGSC0003DMG402013540 | 2.28 | 2.00 | 7.30 | 4.10 | 8.72 | 13.75 | 13.21 |
| StISA1.1 | PGSC0003DMG400020699 | 5.29 | 19.7 | 11.29 | 7.52 | 16.16 | 38.48 | 42.26 |
Table 2 FPKM values of StSS1-StSS6 and StISA1.1 genes in different tissues of potato RH
基因 Gene | 基因号 Gene ID | 花 Flower | 叶 Leaf | 叶柄 Petiole | 茎 Stem | 匍匐茎Stolon | 发育块茎Young tuber | 成熟块茎 Mature tuber |
|---|---|---|---|---|---|---|---|---|
| StSS1 | PGSC0003DMG402018552 | 25.61 | 63.81 | 33.58 | 22.92 | 14.46 | 19.21 | 14.80 |
| StSS2 | PGSC0003DMG400001328 | 21.37 | 59.03 | 37.83 | 50.03 | 45.99 | 124.37 | 207.38 |
| StSS3 | PGSC0003DMG400016481 | 9.03 | 18.75 | 15.66 | 10.55 | 10.48 | 35.72 | 40.04 |
| StSS4 | PGSC0003DMG400008322 | 10.81 | 6.04 | 7.51 | 6.26 | 14.39 | 8.27 | 4.13 |
| StSS5 | PGSC0003DMG400030619 | 3.71 | 1.25 | 1.42 | 3.84 | 14.25 | 42.0 | 57.44 |
| StSS6 | PGSC0003DMG402013540 | 2.28 | 2.00 | 7.30 | 4.10 | 8.72 | 13.75 | 13.21 |
| StISA1.1 | PGSC0003DMG400020699 | 5.29 | 19.7 | 11.29 | 7.52 | 16.16 | 38.48 | 42.26 |
Fig. 4 Analysis of interaction between StPTST2a and enzymes related to starch synthesisA: Yeast two-hybrid assays between StPTST2a, StSS1-StSS6 and StISA1.1. B: Luciferase complementation assays of StPTST2a with StSS4, StSS6 and StISA1.1
| [1] | 赵宇慈, 许丹, 靳承煜, 等. 马铃薯块茎干物质、淀粉及还原糖含量的检测及相关性分析 [J]. 现代食品科技, 2017, 33(10): 288-293, 280. |
| Zhao YC, Xu D, Jin CY, et al. Detection and correlation analysis of dry matter, starch and reducing sugar content in potato tubers [J]. Mod Food Sci Technol, 2017, 33(10): 288-293, 280. | |
| [2] | Zeeman SC, Kossmann J, Smith AM. Starch: its metabolism, evolution, and biotechnological modification in plants [J]. Annu Rev Plant Biol, 2010, 61: 209-234. |
| [3] | 何虎翼, 唐洲萍, 杨鑫, 等. 马铃薯淀粉合成与降解研究进展 [J]. 生物技术通报, 2019, 35(4): 101-107. |
| He HY, Tang ZP, Yang X, et al. Research progress on potato starch synthesis and degradation [J]. Biotechnol Bull, 2019, 35(4): 101-107. | |
| [4] | Ohdan T, Francisco PB Jr, Sawada T, et al. Expression profiling of genes involved in starch synthesis in sink and source organs of rice [J]. J Exp Bot, 2005, 56(422): 3229-3244. |
| [5] | Liu HM, Yu GL, Wei B, et al. Identification and phylogenetic analysis of a novel starch synthase in maize [J]. Front Plant Sci, 2015, 6: 1013. |
| [6] | He S, Hao X, Wang S, et al. A newly-identified inactive starch synthase simultaneously regulates starch synthesis and carbon allocation in storage roots of cassava [J]. BioRxiv, 2020. |
| [7] | Cantarel BL, Coutinho PM, Rancurel C, et al. The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics [J]. Nucleic Acids Res, 2009, 37(Database issue): D233-D238. |
| [8] | Seung D, Soyk S, Coiro M, et al. Protein targeting to starch is required for localising granule-bound starch synthase to starch granules and for normal amylose synthesis in Arabidopsis [J]. PLoS Biol, 2015, 13(2): e1002080. |
| [9] | Wang W, Wei XJ, Jiao GA, et al. GBSS-BINDING PROTEIN, encoding a CBM48 domain-containing protein, affects rice quality and yield [J]. J Integr Plant Biol, 2020, 62(7): 948-966. |
| [10] | Seung D, Boudet J, Monroe J, et al. Homologs of protein targeting to starch control starch granule initiation in Arabidopsis leaves [J]. Plant Cell, 2017, 29(7): 1657-1677. |
| [11] | Seung D, Schreier TB, Bürgy L, et al. Two plastidial coiled-coil proteins are essential for normal starch granule initiation in Arabidopsis [J]. Plant Cell, 2018, 30(7): 1523-1542. |
| [12] | Peng C, Wang YH, Liu F, et al. FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm [J]. Plant J, 2014, 77(6): 917-930. |
| [13] | Zhang L, Li N, Zhang J, et al. The CBM48 domain-containing protein FLO6 regulates starch synthesis by interacting with SSIVb and GBSS in rice [J]. Plant Mol Biol, 2022, 108(4/5): 343-361. |
| [14] | Kerk D, Conley TR, Rodriguez FA, et al. A chloroplast-localized dual-specificity protein phosphatase in Arabidopsis contains a phylogenetically dispersed and ancient carbohydrate-binding domain, which binds the polysaccharide starch [J]. Plant J, 2006, 46(3): 400-413. |
| [15] | 石振明, 杨慧芹, 高冬丽. 马铃薯PTST1基因的克隆、表达及互作分析 [J]. 植物生理学报, 2023, 59(8): 1575-1582. |
| Shi ZM, Yang HQ, Gao DL. Cloning of PTST1 and analysis of its expression and interaction in potato [J]. Plant Physiol J, 2023, 59(8): 1575-1582. | |
| [16] | Hochmuth A, Carswell M, Rowland A, et al. Distinct effects of PTST2b and MRC on starch granule morphogenesis in potato tubers [J]. Plant Biotechnol J, 2025, 23(2): 412-429. |
| [17] | Van Harsselaar JK, Lorenz J, Senning M, et al. Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.) [J]. BMC Genomics, 2017, 18(1): 37. |
| [18] | Rahman S, Nakamura Y, Li Z, et al. The sugary-type isoamylase gene from rice and Aegilops tauschii: characterization and comparison with maize and Arabidopsis [J]. Genome, 2003, 46(3): 496-506. |
| [19] | Roldán I, Wattebled F, Mercedes Lucas M, et al. The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation [J]. Plant J, 2007, 49(3): 492-504. |
| [20] | Hawkins E, Chen JW, Watson-Lazowski A, et al. STARCH SYNTHASE 4 is required for normal starch granule initiation in amyloplasts of wheat endosperm [J]. New Phytol, 2021, 230(6): 2371-2386. |
| [21] | Streb S, Delatte T, Umhang M, et al. Starch granule biosynthesis in Arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase [J]. Plant Cell, 2008, 20(12): 3448-3466. |
| [22] | Hussain H, Mant A, Seale R, et al. Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans [J]. Plant Cell, 2003, 15(1): 133-149. |
| [23] | Utsumi Y, Utsumi C, Sawada T, et al. Functional diversity of isoamylase oligomers: the ISA1 Homo-oligomer is essential for amylopectin biosynthesis in rice endosperm [J]. Plant Physiol, 2011, 156(1): 61-77. |
| [24] | Burton RA, Jenner H, Carrangis L, et al. Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity [J]. Plant J, 2002, 31(1): 97-112. |
| [25] | Ferreira SJ, Senning M, Fischer-Stettler M, et al. Simultaneous silencing of isoamylases ISA1, ISA2 and ISA3 by multi-target RNAi in potato tubers leads to decreased starch content and an early sprouting phenotype [J]. PLoS One, 2017, 12(7): e0181444. |
| [1] | WANG Cong-huan, WU Guo-qiang, WEI Ming. Functional Mechanism of Plant CBL in Regulating the Responses to Abiotic and Biotic Stresses [J]. Biotechnology Bulletin, 2025, 41(7): 1-16. |
| [2] | WANG Tao, HU She-wei, ZHANG Yu, DENG Wen-wen, SHANG Chun-yuan, WANG Wan-yi. Research Progress in Starch Biosynthesis and Regulatory Factors in Maize Kernel [J]. Biotechnology Bulletin, 2025, 41(3): 1-13. |
| [3] | YANG Yong, YUAN Guo-mei, KANG Xiao-xiao, LIU Ya-ming, WANG Dong-sheng, ZHANG Hai-e. Identification and Expression Analysis of Members of the SWEET Gene Family in Chinese Chestnut [J]. Biotechnology Bulletin, 2025, 41(2): 257-269. |
| [4] | FANG Hui-min, GU Yi-shu, ZHANG Jing, ZHANG Long. Isolation and Physicochemical Properties Analysis of Starch from Rice Leaves [J]. Biotechnology Bulletin, 2025, 41(2): 51-57. |
| [5] | YANG Wei, ZHAO Li-fen, TANG Bing, ZHOU Lin-bi, YANG Juan, MO Chuan-yuan, ZHANG Bao-hui, LI Fei, RUAN Song-lin, DENG Ying. Genome-wide Identification and Expression Analysis of the SRO Gene Family in Brassica juncea L. [J]. Biotechnology Bulletin, 2024, 40(8): 129-141. |
| [6] | ZHANG Yu, SHI Lei, GONG Lei, NIE Feng-jie, YANG Jiang-wei, LIU Xuan, YANG Wen-jing, ZHANG Guo-hui, XIE Rui-xia, ZHANG Li. Genome-wide Identification of Potato WOX Gene Family and Its Expression Analysis in in vitro Regeneration and Abiotic Stress [J]. Biotechnology Bulletin, 2024, 40(3): 170-180. |
| [7] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
| [8] | XU Miao-yun, XING Li-juan, YANG Ming-yu, ZHANG Ling-xuan, WANG Lei, LIU Yue-ping. Research Progress in Germplasm Innovation and Utilization of High Amylose Cereal Crops [J]. Biotechnology Bulletin, 2022, 38(4): 20-28. |
| [9] | YANG Li-jie, ZENG Xiang-fang, QIAO Shi-yan. Research Advances on Non-starch Polysaccharide in the Regulation of Intestinal Microflora in Pigs [J]. Biotechnology Bulletin, 2020, 36(2): 9-16. |
| [10] | HE Hu-yi, TANG Zhou-ping, YANG Xin, FAN Wu-jing, TAN Guan-ning, LI Li-shu, HE Xin-min. Research Progress on Potato Starch Synthesis and Degradation [J]. Biotechnology Bulletin, 2019, 35(4): 101-107. |
| [11] | JIA Jian-lei, CHEN Qian, JIN Ji-peng, YUAN Zan, ZHANG Li-ping. Eukaryotic Expression of BMPR1B in Sheep and Identification of Its Interaction Proteins [J]. Biotechnology Bulletin, 2019, 35(12): 94-104. |
| [12] | YUAN Lin, HUANG Zhao, ZENG Jing, GUO Jian-jun, ZHANG Ting, Lü Jun. Fusion of Phytase YiAPPA with the Raw-starch Binding Domain and Characterization of the Fusion Enzyme [J]. Biotechnology Bulletin, 2018, 34(3): 200-207. |
| [13] | QIU Yan-hong,WANG Chao-nan,ZHU Shui-fang. Research Advances on the Pathogenicity of Cucumber Mosaic Virus [J]. Biotechnology Bulletin, 2017, 33(9): 10-16. |
| [14] | ZHANG Jian-bo,JIN Yun-feng,WANG Sha-sha,YANG Hui-qin,PANG Tao,LI Jun-ying,CUI Ming-kun,GONG Ming,. Effects of Different Temperature on Starch Metabolism in Different Growth Stages of Tobacco(Nicotiana tabacum) [J]. Biotechnology Bulletin, 2016, 32(5): 200-211. |
| [15] | Wang Di, Lu Fuping, Wang Haijun, Li Demao, Chen Shulin, Zhang Ke. Screening a New Type of Schizochxtrium Strain Producing DHA Using Starch by Protoplast Fusion Technology [J]. Biotechnology Bulletin, 2015, 31(2): 84-90. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||