Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (9): 32-43.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0397
Previous Articles Next Articles
HU Lu(
), WANG Kai, XU Jing-yi, YE Li-hui, WANG Yong-fei, WANG Li-hua, LI Jie-qin(
)
Received:2025-04-17
Online:2025-09-26
Published:2025-09-24
Contact:
LI Jie-qin
E-mail:m18256213879@163.com;lijq@ahstu.edu.cn
HU Lu, WANG Kai, XU Jing-yi, YE Li-hui, WANG Yong-fei, WANG Li-hua, LI Jie-qin. Research Progress in Genetic Transformation Technologies of Maize and Sorghum[J]. Biotechnology Bulletin, 2025, 41(9): 32-43.
基因 Gene | 作物 Crop | 品种 Variety | 提高转化效率(倍) Improve transformation efficiency (fold) | 文献 Literature |
|---|---|---|---|---|
| BBM | 玉米 Z. mays | PHN46 | 20.5 | [ |
| PH581 | 42.3 | |||
| WUS2 | 玉米 Z. mays | B104 | 1.8 | [ |
| 高粱 S. bicolor | Tx430 | 2.7 | [ | |
| BBM+WUS2 | 玉米 Z. mays | PHN46 | 22.4 | [ |
| PH581 | 63.3 | |||
| 玉米 Z. mays | HC69 | 12.2, 9.8 | [ | |
| 高粱 S. bicolor | Tx430 | 1.9 | [ | |
| GRF-GIF | 玉米 Z. mays | B104 | 3.5 | [ |
| 高粱 S. bicolor | Wheatland | 7.7 | [ | |
| WOX | 玉米 Z. mays | A188 | 5.3 | [ |
Table 1 Effects of employing distinct regeneration-related genes on improving transformation efficiency in diverse crops
基因 Gene | 作物 Crop | 品种 Variety | 提高转化效率(倍) Improve transformation efficiency (fold) | 文献 Literature |
|---|---|---|---|---|
| BBM | 玉米 Z. mays | PHN46 | 20.5 | [ |
| PH581 | 42.3 | |||
| WUS2 | 玉米 Z. mays | B104 | 1.8 | [ |
| 高粱 S. bicolor | Tx430 | 2.7 | [ | |
| BBM+WUS2 | 玉米 Z. mays | PHN46 | 22.4 | [ |
| PH581 | 63.3 | |||
| 玉米 Z. mays | HC69 | 12.2, 9.8 | [ | |
| 高粱 S. bicolor | Tx430 | 1.9 | [ | |
| GRF-GIF | 玉米 Z. mays | B104 | 3.5 | [ |
| 高粱 S. bicolor | Wheatland | 7.7 | [ | |
| WOX | 玉米 Z. mays | A188 | 5.3 | [ |
| [1] | Ramkumar TR, Lenka SK, Arya SS, et al. A short history and perspectives on plant genetic transformation [J]. Methods Mol Biol, 2020, 2124: 39-68. |
| [2] | 仪登霞, 仝宗永. 紫花苜蓿遗传转化体系的优化 [J]. 分子植物育种, 2021, 19(2): 504-511. |
| Yi DX, Tong ZY. Optimization of genetic transformation system in alfalfa [J]. Mol Plant Breed, 2021, 19(2): 504-511. | |
| [3] | Yan Y, Zhu XJ, Yu Y, et al. Nanotechnology strategies for plant genetic engineering [J]. Adv Mater, 2022, 34(7): 2106945. |
| [4] | Su WB, Xu MY, Radani Y, et al. Technological development and application of plant genetic transformation [J]. Int J Mol Sci, 2023, 24(13): 10646. |
| [5] | Lowe K, Wu E, Wang N, et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation [J]. Plant Cell, 2016, 28(9): 1998-2015. |
| [6] | Vandeputte W, Coussens G, Aesaert S, et al. Use of GRF-GIF chimeras and a ternary vector system to improve maize (Zea mays L.) transformation frequency [J]. Plant J, 2024, 119(4): 2116-2132. |
| [7] | Wang K, Shi L, Liang XN, et al. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation [J]. Nat Plants, 2022, 8(2): 110-117. |
| [8] | Ahmed RI, Ding AM, Xie MM, et al. Progress in optimization of Agrobacterium-mediated transformation in sorghum (Sorghum bicolor) [J]. Int J Mol Sci, 2018, 19(10): 2983. |
| [9] | Que QD, Chilton MM, Elumalai S, et al. Repurposing macromolecule delivery tools for plant genetic modification in the era of precision genome engineering [J]. Methods Mol Biol, 2019, 1864: 3-18. |
| [10] | 钟育海, 申艮宝. 植物基因的遗传转化方法 [J]. 安徽农学通报, 2010, 16(11): 65-66, 206. |
| Zhong YH, Shen GB. Genetic transformation technique of plant gene [J]. Anhui Agric Sci Bull, 2010, 16(11): 65-66, 206. | |
| [11] | Altpeter F, Baisakh N, Beachy R, et al. Particle bombardment and the genetic enhancement of crops: myths and realities [J]. Mol Breed, 2005, 15(3): 305-327. |
| [12] | Sanford JC, Klein TM, Wolf ED, et al. Delivery of substances into cells and tissues using a particle bombardment process [J]. Part Sci Technol, 1987, 5(1): 27-37. |
| [13] | Klein TM, Wolf ED, Wu R, et al. High-velocity microprojectiles for delivering nucleic acids into living cells [J]. Nature, 1987, 327(6117): 70-73. |
| [14] | Klein TM, Harper EC, Svab Z, et al. Stable genetic transformation of intact Nicotiana cells by the particle bombardment process [J]. Proc Natl Acad Sci USA, 1988, 85(22): 8502-8505. |
| [15] | Klein TM, Kornstein L, Sanford JC, et al. Genetic transformation of maize cells by particle bombardment [J]. Plant Physiol, 1989, 91(1): 440-444. |
| [16] | Klein TM, Fromm M, Weissinger A, et al. Transfer of foreign genes into intact maize cells with high-velocity microprojectiles [J]. Proc Natl Acad Sci USA, 1988, 85(12): 4305-4309. |
| [17] | 李志亮, 吴忠义, 杨清, 等. 基因枪转化法对抗旱基因导入玉米的研究 [J]. 生物技术通报, 2016, 32(5): 61-68. |
| Li ZL, Wu ZY, Yang Q, et al. The transformation of drought-resistant gene into maize by microprojectile bombardment [J]. Biotechnol Bull, 2016, 32(5): 61-68. | |
| [18] | Casas AM, Kononowicz AK, Zehr UB, et al. Transgenic sorghum plants via microprojectile bombardment [J]. Proc Natl Acad Sci USA, 1993, 90(23): 11212-11216. |
| [19] | Zhu H, Muthukrishnan S, Krishnaveni S, et al. Biolistic transformation of sorghum using a rice chitinase gene [J]. J Genet Breed, 1998, 52(3): 243-252. |
| [20] | Belide S, Vanhercke T, Petrie JR, et al. Robust genetic transformation of sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos [J]. Plant Methods, 2017, 13: 109. |
| [21] | Able JA, Rathus C, Godwin ID. The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum [J]. Vitro Cell Dev Biol Plant, 2001, 37(3): 341-348. |
| [22] | Dai SH, Zheng P, Marmey P, et al. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment [J]. Mol Breed, 2001, 7(1): 25-33. |
| [23] | Chilton MD, Drummond MH, Merlo DJ, et al. Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis [J]. Cell, 1977, 11(2): 263-271. |
| [24] | Grimsley N, Hohn T, Davies JW, et al. Agrobacterium-mediated delivery of infectious Maize streak virus into maize plants [J]. Nature, 1987, 325(6100): 177-179. |
| [25] | Ishida Y, Saito H, Ohta S, et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens [J]. Nat Biotechnol, 1996, 14(6): 745-750. |
| [26] | Ishida Y, Hiei Y, Komari T. Agrobacterium-mediated transformation of maize [J]. Nat Protoc, 2007, 2(7): 1614-1621. |
| [27] | Zhao ZY, Cai T, Tagliani L, et al. Agrobacterium-mediated sorghum transformation [J]. Plant Mol Biol, 2000, 44(6): 789-798. |
| [28] | 韩立杰, 才宏伟. 高粱遗传转化研究进展 [J]. 中国农业科学, 2024, 57(3): 454-468. |
| Han LJ, Cai HW. Progress on genetic transformation of sorghum [J]. Sci Agric Sin, 2024, 57(3): 454-468. | |
| [29] | Zhao ZY, Gu WN, Cai TS, et al. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize [J]. Mol Breed, 2002, 8(4): 323-333. |
| [30] | Frame BR, Shou HX, Chikwamba RK, et al. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system [J]. Plant Physiol, 2002, 129(1): 13-22. |
| [31] | Mookkan M, Nelson-Vasilchik K, Hague J, et al. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2 [J]. Plant Cell Rep, 2017, 36(9): 1477-1491. |
| [32] | Aesaert S, Impens L, Coussens G, et al. Optimized transformation and gene editing of the B104 public maize inbred by improved tissue culture and use of morphogenic regulators [J]. Front Plant Sci, 2022, 13: 883847. |
| [33] | Liu M, Yang Y, Liang TH, et al. Dynamic transcriptome and GWAS uncover a hydroxyproline-rich glycoprotein that suppresses Agrobacterium-mediated transformation in maize [J]. Mol Plant, 2025, 18(5): 747-764. |
| [34] | 袁鹰, 刘德璞, 郑培和, 等. 东北玉米自交系胚性愈伤组织的诱导 [J]. 玉米科学, 2001, 9(1): 37-38. |
| Yuan Y, Liu DP, Zheng PH, et al. Influencing effect of induction of embryonic callus in maize inbred_lines of northeast [J]. Maize Sci, 2001, 9(1): 37-38. | |
| [35] | Hiei Y, Ishida Y, Komari T. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens [J]. Front Plant Sci, 2014, 5: 628. |
| [36] | Do PT, Lee H, Mookkan M, et al. Rapid and efficient Agrobacterium-mediated transformation of sorghum (Sorghum bicolor) employing standard binary vectors and bar gene as a selectable marker [J]. Plant Cell Rep, 2016, 35(10): 2065-2076. |
| [37] | Gurel S, Gurel E, Miller TI, et al. Agrobacterium-mediated transformation of Sorghum bicolor using immature embryos [J]. Methods Mol Biol, 2012, 847: 109-122. |
| [38] | 张荣, 王国英, 张晓红, 等. 根癌农杆菌介导的玉米遗传转化体系的建立 [J]. 农业生物技术学报, 2001, 9(1): 45-48, 104. |
| Zhang R, Wang GY, Zhang XH, et al. Agrobacterium tumefaciens mediated maize transformation [J]. J Agric Biotechnol, 2001, 9(1): 45-48, 104. | |
| [39] | Wu E, Lenderts B, Glassman K, et al. Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants [J]. In Vitro Cell Dev Biol Plant, 2014, 50(1): 9-18. |
| [40] | 熊换英, 钟伟光, 张寿文. 农杆菌介导的植物遗传转化影响因素研究进展 [J]. 安徽农业科学, 2012, 40(17): 9214-9217, 9287. |
| Xiong HY, Zhong WG, Zhang SW. Research progress in the influencing factors of Agrobacterium-mediated genetic transformation of plants [J]. J Anhui Agric Sci, 2012, 40(17): 9214-9217, 9287. | |
| [41] | Frame B, Main M, Schick R, et al. Genetic transformation using maize immature zygotic embryos [J]. Methods Mol Biol, 2011, 710: 327-341. |
| [42] | Lee H, Zhang ZJ. Agrobacterium-mediated transformation of maize (Zea mays) immature embryos [J]. Methods Mol Biol, 2014, 1099: 273-280. |
| [43] | Raji JA, Frame B, Little D, et al. Agrobacterium- and biolistic-mediated transformation of maize B104 inbred [J]. Methods Mol Biol, 2018, 1676: 15-40. |
| [44] | Anand A, Bass SH, Wu E, et al. An improved ternary vector system for Agrobacterium-mediated rapid maize transformation [J]. Plant Mol Biol, 2018, 97(1/2): 187-200. |
| [45] | Jambagi S, Bhat Set al. Agrobacterium-mediated transformation studies in sorghum using an improved gfp reporter gene [J]. J Sat Agric Res, 2010, 8. |
| [46] | Liu SN, Shi YL, Liu F, et al. LaCl3 treatment improves Agrobacterium-mediated immature embryo genetic transformation frequency of maize [J]. Plant Cell Rep, 2022, 41(6): 1439-1448. |
| [47] | Liu SN, Qiao JH, Zhang SS, et al. Application of uniconazole in improving the high-throughput genetic transformation efficiency in maize [J]. Plant Sci, 2024, 349: 112270. |
| [48] | 肖军, 石太渊, 郑秀春, 等. 根癌农杆菌介导的高粱遗传转化体系的建立 [J]. 杂粮作物, 2004, 24(4): 200-203. |
| Xiao J, Shi TY, Zheng XC, et al. Establishment of sorghum genetic transformation system with mediating Agrobacterium tumefaciens [J]. Rain Fed Crops, 2004, 24(4): 200-203. | |
| [49] | Che P, Anand A, Wu E, et al. Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application [J]. Plant Biotechnol J, 2018, 16(7): 1388-1395. |
| [50] | Kumar V, Campbell LM, Rathore KS. Rapid recovery- and characterization of transformants following Agrobacterium-mediated T-DNA transfer to sorghum [J]. Plant Cell Tissue Organ Cult, 2011, 104(2): 137-146. |
| [51] | 王兰, 田华. 根癌农杆菌介导的水稻遗传转化研究进展 [J]. 安徽农业科学, 2009, 37(30): 14594-14596, 14628. |
| Wang L, Tian H. Progress in genetic transformation mediated by Agrobacterium tumefacien in rice [J]. J Anhui Agric Sci, 2009, 37(30): 14594-14596, 14628. | |
| [52] | Ribeiro TP, Lourenço-Tessutti IT, de Melo BP, et al. Improved cotton transformation protocol mediated by Agrobacterium and biolistic combined-methods [J]. Planta, 2021, 254(2): 20. |
| [53] | Reyes FC, Sun BM, Guo HN, et al. Agrobacterium tumefaciens-mediated transformation of maize endosperm as a tool to study endosperm cell biology [J]. Plant Physiol, 2010, 153(2): 624-631. |
| [54] | Chakraborty M, Reddy PS, Narasu ML, et al. Agrobacterium-mediated genetic transformation of commercially elite rice restorer line using nptII gene as a plant selection marker [J]. Physiol Mol Biol Plants, 2016, 22(1): 51-60. |
| [55] | 杨雅文, 朱东杰, 潘弘, 等. 玉米无基因型限制遗传转化体系建立和应用 [J]. 作物学报, 2024, 50(11): 2674-2683. |
| Yang YW, Zhu DJ, Pan H, et al. Genotype-independent transformation technique development and application in maize [J]. Acta Agron Sin, 2024, 50(11): 2674-2683. | |
| [56] | Gurel S, Gurel E, Kaur R, et al. Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos [J]. Plant Cell Rep, 2009, 28(3): 429-444. |
| [57] | Chen ZL, Debernardi JM, Dubcovsky J, et al. Recent advances in crop transformation technologies [J]. Nat Plants, 2022, 8(12): 1343-1351. |
| [58] | Jha P, Kumar V. BABY BOOM (BBM): a candidate transcription factor gene in plant biotechnology [J]. Biotechnol Lett, 2018, 40(11/12): 1467-1475. |
| [59] | Boutilier K, Offringa R, Sharma VK, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth [J]. Plant Cell, 2002, 14(8): 1737-1749. |
| [60] | Srinivasan C, Liu ZR, Heidmann I, et al. Heterologous expression of the baby boom ap2/erf transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.) [J]. Planta, 2007, 225(2): 341-351. |
| [61] | Endrizzi K, Moussian B, Haecker A, et al. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE [J]. Plant J, 1996, 10(6): 967-979. |
| [62] | Zhang TQ, Lian H, Zhou CM, et al. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration [J]. Plant Cell, 2017, 29(5): 1073-1087. |
| [63] | Negin B, Shemer O, Sorek Y, et al. Shoot stem cell specification in roots by the WUSCHEL transcription factor [J]. PLoS One, 2017, 12(4): e0176093. |
| [64] | Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning [J]. Plant Cell, 2009, 21(11): 3493-3505. |
| [65] | Kang M, Lee K, Ji Q, et al. Enhancing maize transformation and targeted mutagenesis through the assistance of non-integrating Wus2 vector [J]. Plants, 2023, 12(15): 2799. |
| [66] | Che P, Wu E, Simon MK, et al. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum [J]. Commun Biol, 2022, 5(1): 344. |
| [67] | Anand A, Wu E, Li Z, et al. High efficiency Agrobacterium-mediated site-specific gene integration in maize utilizing the FLP-FRT recombination system [J]. Plant Biotechnol J, 2019, 17(8): 1636-1645. |
| [68] | Fontanet-Manzaneque JB, Haeghebaert J, Aesaert S, et al. Efficient sorghum and maize transformation using a ternary vector system combined with morphogenic regulators [J]. Plant J, 2024, 120(5): 2076-2088. |
| [69] | Wang N, Ryan L, Sardesai N, et al. Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum [J]. Nat Plants, 2023, 9(2): 255-270. |
| [70] | Azanu MK, Kang M, Lee K, et al. Agrobacterium-mediated transformation of tropical maize using seedling leaf whorl explants [J]. Cold Spring Harb Protoc, 2025. |
| [71] | Gordon-Kamm B, Sardesai N, Arling M, et al. Using morphogenic genes to improve recovery and regeneration of transgenic plants [J]. Plants, 2019, 8(2): 38. |
| [72] | Kim JH. Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants [J]. BMB Rep, 2019, 52(4): 227-238. |
| [73] | Liebsch D, Palatnik JF. microRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology [J]. Curr Opin Plant Biol, 2020, 53: 31-42. |
| [74] | Yarra R, Krysan PJ. GRF-GIF Duo and GRF-GIF-BBM: novel transformation methodologies for enhancing regeneration efficiency of genome-edited recalcitrant crops [J]. Planta, 2023, 257(3): 60. |
| [75] | Debernardi JM, Mecchia MA, Vercruyssen L, et al. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity [J]. Plant J, 2014, 79(3): 413-426. |
| [76] | Lopos LC, Bykova NV, Robinson J, et al. Diversity of transgene integration and gene-editing events in wheat (Triticum aestivum L.) transgenic plants generated using Agrobacterium-mediated transformation [J]. Front Genome Ed, 2023, 5: 1265103. |
| [77] | Debernardi JM, Tricoli DM, Ercoli MF, et al. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants [J]. Nat Biotechnol, 2020, 38(11): 1274-1279. |
| [78] | Li JP, Pan WB, Zhang S, et al. A rapid and highly efficient sorghum transformation strategy using GRF4-GIF1/ternary vector system [J]. Plant J, 2024, 117(5): 1604-1613. |
| [79] | Hu XM, Xu L. Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis [J]. Plant Physiol, 2016, 172(4): 2363-2373. |
| [80] | Liu XM, Bie XM, Lin XL, et al. Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation [J]. Nat Plants, 2023, 9(6): 908-925. |
| [81] | McFarland FL, Collier R, Walter N, et al. A key to totipotency: Wuschel-like homeobox 2a unlocks embryogenic culture response in maize (Zea mays L.) [J]. Plant Biotechnol J, 2023, 21(9): 1860-1872. |
| [82] | Iwase A, Harashima H, Ikeuchi M, et al. WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis [J]. Plant Cell, 2017, 29(1): 54-69. |
| [83] | Iwase A, Mita K, Nonaka S, et al. WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed [J]. J Plant Res, 2015, 128(3): 389-397. |
| [84] | Ikeuchi M, Iwase A, Rymen B, et al. Wounding triggers callus formation via dynamic hormonal and transcriptional changes [J]. Plant Physiol, 2017, 175(3): 1158-1174. |
| [85] | Iwase A, Mitsuda N, Koyama T, et al. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis [J]. Curr Biol, 2011, 21(6): 508-514. |
| [86] | Iwase A, Mitsuda N, Ikeuchi M, et al. Arabidopsis WIND1 induces callus formation in rapeseed, tomato, and tobacco [J]. Plant Signal Behav, 2013, 8(12): e27432. |
| [87] | Kareem A, Durgaprasad K, Sugimoto K, et al. PLETHORA genes control regeneration by a two-step mechanism [J]. Curr Biol, 2015, 25(8): 1017-1030. |
| [88] | Bustillo-Avendaño E, Ibáñez S, Sanz O, et al. Regulation of hormonal control, cell reprogramming, and patterning during de novo root organogenesis [J]. Plant Physiol, 2018, 176(2): 1709-1727. |
| [89] | Junker A, Mönke G, Rutten T, et al. Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana [J]. Plant J, 2012, 71(3): 427-442. |
| [90] | Braybrook SA, Stone SL, Park S, et al. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis [J]. Proc Natl Acad Sci USA, 2006, 103(9): 3468-3473. |
| [91] | Ren C, Zhang Z, Wang Y, et al. Genome-wide identification and characterization of the NF-Y gene family in grape (Vitis vinifera L.) [J]. BMC Genomics, 2016, 17(1): 605. |
| [92] | Ledwoń A, Gaj MD. LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells [J]. Plant Cell Rep, 2009, 28(11): 1677-1688. |
| [93] | Li K, Wang J, Liu CL, et al. Expression of AtLEC2 and AtIPTs promotes embryogenic callus formation and shoot regeneration in tobacco [J]. BMC Plant Biol, 2019, 19(1): 314. |
| [94] | Yu Y, Yu HX, Peng J, et al. Enhancing wheat regeneration and genetic transformation through overexpression of TaLAX1 [J]. Plant Commun, 2024, 5(5): 100738. |
| [95] | Yang WT, Zhai HW, Wu FM, et al. Peptide REF1 is a local wound signal promoting plant regeneration [J]. Cell, 2024, 187(12): 3024-3038.e14. |
| [96] | Chen Z, Debernardi JM, Dubcovsky J, et al. The combination of morphogenic regulators BABY BOOM and GRF-GIF improves maize transformation efficiency [J]. bioRxiv, 2022. DOI: 10.1101/2022.09.02.506370 . |
| [97] | Mookkan M, Nelson-Vasilchik K, Hague J, et al. Morphogenic regulator-mediated transformation of maize inbred B73 [J]. Curr Protoc Plant Biol, 2018, 3(4): e20075. |
| [98] | Lowe K, Rota ML, Hoerster G, et al. Rapid genotype "independent" Zea mays L. (maize) transformation via direct somatic embryogenesis [J]. In Vitro Cell Dev Biol Plant, 2018, 54(3): 240-252. |
| [99] | Hoerster G, Wang N, Ryan L, et al. Use of non-integrating Zm-Wus2 vectors to enhance maize transformation [J]. Vitro Cell Dev Biol Plant, 2020, 56(3): 265-279. |
| [100] | Cheng TH, Sun MX. A highly efficient and environmentally friendly strategy to obtain transgene-free genome-edited progeny in flowering plants [J]. Mol Plant, 2025: S1674-2052(25)00104-2. |
| [1] | LI Ya-qiong, GESANG La-mao, CHEN Qi-di, YANG Yu-huan, HE Hua-zhuan, ZHAO Yao-fei. Heterologous Overexpression of Sorghum SbSnRK2.1 Enhances the Resistance to Salt Stress in Arabidopsis [J]. Biotechnology Bulletin, 2025, 41(8): 115-123. |
| [2] | DENG Mei-bi, YAN Lang, ZHAN Zhi-tian, ZHU Min, HE Yu-bing. Efficient CRISPR Gene Editing in Rice Assisted by RUBY [J]. Biotechnology Bulletin, 2025, 41(8): 65-73. |
| [3] | ZHAO Qiang, CHEN Si-yu, PENG Fang-li, WANG Can, GAO Jie, ZHOU Ling-bo, ZHANG Guo-bing, JIANG Yu-wen, SHAO Ming-bo. Effects of Intercropping and Nitrogen Application on the Diversity and Functions of Soil Bacteria around Sorghum Rhizosphere [J]. Biotechnology Bulletin, 2025, 41(6): 307-316. |
| [4] | PEI Jing-qi, ZHAO Meng-ran, HUANG Chen-yang, WU Xiang-li. Discovery and Verification of a Functional Gene Influencing the Growth and Development of Pleurotus ostreatus [J]. Biotechnology Bulletin, 2025, 41(6): 327-334. |
| [5] | LIU Zhuo-jun, CHAI Wen-ting, REN Yi-le, WANG Xin-yu, ZHU Li-xun, ZHAO Shan-shan, YANG Bo-hui, FAN Jia-li, LI Xin-feng, ZHAO Wei-jun, LYU Jin-hui, ZHANG Chun-lai. Analysis on Expression and DNA Variation of TGA Genes in Sorghum (Sorghum bicolor) in Response to Sporisorium reilianum Infection [J]. Biotechnology Bulletin, 2025, 41(5): 90-103. |
| [6] | WEN Bo-lin, WAN Min, HU Jian-jun, WANG Ke-xiu, JING Sheng-lin, WANG Xin-yue, ZHU Bo, TANG Ming-xia, LI Bing, HE Wei, ZENG Zi-xian. Establishment of Genetic Transformation and Gene Editing System for a Potato Cultivar Chuanyu 50 [J]. Biotechnology Bulletin, 2025, 41(4): 88-97. |
| [7] | LIU Tong-tong, LI Xiao-hui, YANG Jun-long, CHEN Wang, YU Meng, WANG Chao-fan, WANG Feng-ru, KE Shao-ying. Functional Study on ZmSTART1 Regulation of Maize Vascular Bundle Formation [J]. Biotechnology Bulletin, 2025, 41(4): 115-122. |
| [8] | LI Wen-lan, HOU Xin-wei, LI Yan, ZHAO Rui-jun, MENG Zhao-dong, YUE Run-qing. Identification and Resistance Detection of Homozygous and Heterozygous Plants of Transgenic Maize LD05 with Resistances to Insect and Herbicide [J]. Biotechnology Bulletin, 2025, 41(4): 123-133. |
| [9] | YANG Chao-jie, ZHANG Lan, CHEN Hong, HUANG Juan, SHI Tao-xiong, ZHU Li-wei, CHEN Qing-fu, LI Hong-you, DENG Jiao. Functional Identification of the Transcription Factor Gene FtbHLH3 in Regulating Flavonoid Biosynthesis in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2025, 41(4): 134-144. |
| [10] | WANG Tao, HU She-wei, ZHANG Yu, DENG Wen-wen, SHANG Chun-yuan, WANG Wan-yi. Research Progress in Starch Biosynthesis and Regulatory Factors in Maize Kernel [J]. Biotechnology Bulletin, 2025, 41(3): 1-13. |
| [11] | DU Pin-ting, WU Guo-jiang, WANG Zhen-guo, LI Yan, ZHOU Wei, ZHOU Ya-xing. Identification and Expression Analysis of CPP Gene Family in Sorghum [J]. Biotechnology Bulletin, 2025, 41(1): 132-142. |
| [12] | SONG Qian-na, DUAN Yong-hong, FENG Rui-yun. Establishment of CRISPR/Cas9-mediated Highly Efficient Gene Editing System in Microtubers of Potatoes [J]. Biotechnology Bulletin, 2024, 40(9): 33-41. |
| [13] | HU Jin-jin, LI Su-zhen, MA Xu-hui, LIU Xiao-qing, XIE Shan-shan, JIANG Hai-yang, CHEN Ru-mei. Regulation of Maize Anthocyanin Biosynthesis Metabolism [J]. Biotechnology Bulletin, 2024, 40(6): 34-44. |
| [14] | ZHANG Mei-yu, ZHAO Yu-bin, WANG Ling-yun, SONG Yuan-da, ZHAO Xin-he, REN Xiao-jie. Research Progress in the Production of Functional Fatty Acid DHA by Microalga Thraustochytrids [J]. Biotechnology Bulletin, 2024, 40(6): 81-94. |
| [15] | SUN Ya-nan, WANG Chun-xue, WANG Xin, DU Bing-hai, LIU Kai, WANG Cheng-qiang. Biocontrol Characteristics of Bacillus atrophaeus CNY01 and Its Salt-resistant and Growth-promoting Effect on Maize Seedling [J]. Biotechnology Bulletin, 2024, 40(5): 248-260. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||