Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (8): 115-123.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0114
LI Ya-qiong(
), GESANG La-mao, CHEN Qi-di, YANG Yu-huan, HE Hua-zhuan, ZHAO Yao-fei(
)
Received:2025-01-27
Online:2025-08-26
Published:2025-08-14
Contact:
LI Ya-qiong, ZHAO Yao-fei
E-mail:li_yaqiong@126.com;zhao_yf@163.com
LI Ya-qiong, GESANG La-mao, CHEN Qi-di, YANG Yu-huan, HE Hua-zhuan, ZHAO Yao-fei. Heterologous Overexpression of Sorghum SbSnRK2.1 Enhances the Resistance to Salt Stress in Arabidopsis[J]. Biotechnology Bulletin, 2025, 41(8): 115-123.
| 引物名称 Primer name | 序列 Sequence (5′‒3′) |
|---|---|
| SbSnRK2.1-F | GCCTTCTTACTCAGACCAAT |
| SbSnRK2.1-R | TCCTTCTCTTCTTCTTCATCC |
| SbSnRK2.2-F | CGGCTATTCCAAGTCATCT |
| SbSnRK2.2-R | GCACCAACAACCATTACATA |
| SbSnRK2.3-F | TCATCAGTTCTACACTCTCAG |
| SbSnRK2.3-R | ACCGACCAGCATCACATA |
| SbSnRK2.4-F | AGGACGAGGCAAGGTATT |
| SbSnRK2.4-R | CAGCAGCGATGACTTAGA |
| SbSnRK2.5-F | TCAGGCTATGGCTACAGT |
| SbSnRK2.5-R | CACACTCATCTTCTTCTTCC |
| SbSnRK2.6-F | CACTCTGCTGGATGGAAG |
| SbSnRK2.6-R | CAATCTTGCCGTCGTATTC |
| SbSnRK2.7-F | TTCGCCGTCAAGTTCATC |
| SbSnRK2.7-R | GCCAGCAGCATATTCCATA |
| SbSnRK2.8-F | GTGAGAATGAGGCAAGGTT |
| SbSnRK2.8-F | TGAGAGTGAAGAACAGAAGAC |
| SbSnRK2.9-R | CATGAGGATCGTTCAGGAG |
| SbSnRK2.9-F | TGTCGTAGTCGTCTTCTTC |
| SbSnRK2.10-R | ACTTACTCCGTCCAGTCC |
| SbSnRK2.10-F | CCATCCTCTTCCTCCTCAT |
| SbSnRK2.11-R | GGCAAGAAGATTGATGAGAA |
| SbSnRK2.11-R | TCCACCAGCAGCATATTC |
Table 1 Primers used in this study
| 引物名称 Primer name | 序列 Sequence (5′‒3′) |
|---|---|
| SbSnRK2.1-F | GCCTTCTTACTCAGACCAAT |
| SbSnRK2.1-R | TCCTTCTCTTCTTCTTCATCC |
| SbSnRK2.2-F | CGGCTATTCCAAGTCATCT |
| SbSnRK2.2-R | GCACCAACAACCATTACATA |
| SbSnRK2.3-F | TCATCAGTTCTACACTCTCAG |
| SbSnRK2.3-R | ACCGACCAGCATCACATA |
| SbSnRK2.4-F | AGGACGAGGCAAGGTATT |
| SbSnRK2.4-R | CAGCAGCGATGACTTAGA |
| SbSnRK2.5-F | TCAGGCTATGGCTACAGT |
| SbSnRK2.5-R | CACACTCATCTTCTTCTTCC |
| SbSnRK2.6-F | CACTCTGCTGGATGGAAG |
| SbSnRK2.6-R | CAATCTTGCCGTCGTATTC |
| SbSnRK2.7-F | TTCGCCGTCAAGTTCATC |
| SbSnRK2.7-R | GCCAGCAGCATATTCCATA |
| SbSnRK2.8-F | GTGAGAATGAGGCAAGGTT |
| SbSnRK2.8-F | TGAGAGTGAAGAACAGAAGAC |
| SbSnRK2.9-R | CATGAGGATCGTTCAGGAG |
| SbSnRK2.9-F | TGTCGTAGTCGTCTTCTTC |
| SbSnRK2.10-R | ACTTACTCCGTCCAGTCC |
| SbSnRK2.10-F | CCATCCTCTTCCTCCTCAT |
| SbSnRK2.11-R | GGCAAGAAGATTGATGAGAA |
| SbSnRK2.11-R | TCCACCAGCAGCATATTC |
基因 Gene | 基因ID Gene ID | 基因长度 Gene length (bp) | CDS长度 CDS length (bp) |
|---|---|---|---|
| SbSnRK2.1 | Sobic.003G370100 | 5 130 | 1 086 |
| SbSnRK2.2 | Sobic.001G078800 | 7 044 | 1 101 |
| SbSnRK2.3 | Sobic.001G168400 | 3 201 | 1 089 |
| SbSnRK2.4 | Sobic.004G173500 | 5 029 | 1 095 |
| SbSnRK2.5 | Sobic.009G149900 | 4 945 | 1 080 |
| SbSnRK2.6 | Sobic.008G147000 | 2 691 | 1 095 |
| SbSnRK2.7 | Sobic.002G379400 | 4 989 | 1 020 |
| SbSnRK2.8 | Sobic.001G350700 | 4 525 | 1 035 |
| SbSnRK2.9 | Sobic.006G279100 | 6 401 | 1 140 |
| SbSnRK2.10 | Sobic.006G083000 | 5 786 | 1 134 |
| SbSnRK2.11 | Sobic.001G294400 | 3 307 | 1 002 |
Table 2 Information of SnRK2 genes in sorghum (SbSnRK2s)
基因 Gene | 基因ID Gene ID | 基因长度 Gene length (bp) | CDS长度 CDS length (bp) |
|---|---|---|---|
| SbSnRK2.1 | Sobic.003G370100 | 5 130 | 1 086 |
| SbSnRK2.2 | Sobic.001G078800 | 7 044 | 1 101 |
| SbSnRK2.3 | Sobic.001G168400 | 3 201 | 1 089 |
| SbSnRK2.4 | Sobic.004G173500 | 5 029 | 1 095 |
| SbSnRK2.5 | Sobic.009G149900 | 4 945 | 1 080 |
| SbSnRK2.6 | Sobic.008G147000 | 2 691 | 1 095 |
| SbSnRK2.7 | Sobic.002G379400 | 4 989 | 1 020 |
| SbSnRK2.8 | Sobic.001G350700 | 4 525 | 1 035 |
| SbSnRK2.9 | Sobic.006G279100 | 6 401 | 1 140 |
| SbSnRK2.10 | Sobic.006G083000 | 5 786 | 1 134 |
| SbSnRK2.11 | Sobic.001G294400 | 3 307 | 1 002 |
Fig. 2 Gene structure analysis of SbSnRK2sThe yellow part indicates the exon, the black solid line indicates the intron, and the blue part indicates the sequence of the upstream and downstream non-coding regions of the SbSnRK2 genes
Fig. 7 Heterologous overexpression of SbSnRK2.1 promotes the primary root growth of A. thaliana under salt stressA: Growth of primary roots under normal and salt stress conditions, bar = 1 cm. B: Statistics of primary root length. C: Relative root length (ratio of root length under salt stress to average root length under normal growth conditions)
| [1] | Munns R, Tester M. Mechanisms of salinity tolerance [J]. Annu Rev Plant Biol, 2008, 59: 651-681. |
| [2] | Ismail A, Takeda S, Nick P. Life and death under salt stress: same players, different timing? [J]. J Exp Bot, 2014, 65(12): 2963-2979. |
| [3] | Yang YQ, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses [J]. New Phytol, 2018, 217(2): 523-539. |
| [4] | Jamra G, Agarwal A, Singh N, et al. Ectopic expression of finger millet calmodulin confers drought and salinity tolerance in Arabidopsis thaliana [J]. Plant Cell Rep, 2021, 40(11): 2205-2223. |
| [5] | Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses [J]. Plant Physiol, 2009, 149(1): 88-95. |
| [6] | Munns R, Gilliham M. Salinity tolerance of crops-what is the cost? [J]. New Phytol, 2015, 208(3): 668-673. |
| [7] | Liang XY, Li JF, Yang YQ, et al. Designing salt stress-resilient crops: current progress and future challenges [J]. J Integr Plant Biol, 2024, 66(3): 303-329. |
| [8] | Hrabak EM, Chan CWM, Gribskov M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases [J]. Plant Physiol, 2003, 132(2): 666-680. |
| [9] | Halford NG, Hey SJ. Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants [J]. Biochem J, 2009, 419(2): 247-259. |
| [10] | Jossier M, Bouly JP, Meimoun P, et al. SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana [J]. Plant J, 2009, 59(2): 316-328. |
| [11] | Guo Y, Xiong LM, Song CP, et al. A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis [J]. Dev Cell, 2002, 3(2): 233-244. |
| [12] | Kim KN, Cheong YH, Grant JJ, et al. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis [J]. Plant Cell, 2003, 15(2): 411-423. |
| [13] | Boudsocq M, Barbier-Brygoo H, Laurière C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana [J]. J Biol Chem, 2004, 279(40): 41758-41766. |
| [14] | Yoshida R, Umezawa T, Mizoguchi T, et al. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis [J]. J Biol Chem, 2006, 281(8): 5310-5318. |
| [15] | Fujii H, Verslues PE, Zhu JK. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo [J]. Proc Natl Acad Sci USA, 2011, 108(4): 1717-1722. |
| [16] | Kulik A, Wawer I, Krzywińska E, et al. SnRK2 protein kinases‒key regulators of plant response to abiotic stresses [J]. OMICS, 2011, 15(12): 859-872. |
| [17] | Fujii H, Zhu JK. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress [J]. Proc Natl Acad Sci USA, 2009, 106(20): 8380-8385. |
| [18] | Fujita Y, Nakashima K, Yoshida T, et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis [J]. Plant Cell Physiol, 2009, 50(12): 2123-2132. |
| [19] | Nakashima K, Fujita Y, Kanamori N, et al. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy [J]. Plant Cell Physiol, 2009, 50(7): 1345-1363. |
| [20] | Umezawa T, Yoshida R, Maruyama K, et al. SRK2C a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana [J]. Proc Natl Acad Sci USA, 2004, 101(49): 17306-17311. |
| [21] | Mizoguchi M, Umezawa T, Nakashima K, et al. Two closely related subclass II SnRK2 protein kinases cooperatively regulate drought-inducible gene expression [J]. Plant Cell Physiol, 2010, 51(5): 842-847. |
| [22] | Anderberg RJ, Walker-Simmons MK. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases [J]. Proc Natl Acad Sci USA, 1992, 89(21): 10183-10187. |
| [23] | Mao XG, Zhang HY, Tian SJ, et al. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis [J]. J Exp Bot, 2010, 61(3): 683-696. |
| [24] | Diédhiou CJ, Popova OV, Dietz KJ, et al. The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice [J]. BMC Plant Biol, 2008, 8: 49. |
| [25] | Lou DJ, Wang HP, Liang G, et al. OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice [J]. Front Plant Sci, 2017, 8: 993. |
| [26] | Lou DJ, Lu SP, Chen Z, et al. Molecular characterization reveals that OsSAPK3 improves drought tolerance and grain yield in rice [J]. BMC Plant Biol, 2023, 23(1): 53. |
| [27] | Zhao MC, Zhang Q, Liu H, et al. The osmotic stress-activated receptor-like kinase DPY1 mediates SnRK2 kinase activation and drought tolerance in Setaria [J]. Plant Cell, 2023, 35(10): 3782-3808. |
| [28] | 张春兰, 满丽莉, 向殿军, 等. 菘蓝ItSnRK2.1基因的克隆及其序列特性分析 [J]. 生物技术通报, 2018, 34(1): 119-128. |
| Zhang CL, Man LL, Xiang DJ, et al. Cloning and characteristics analysis of gene ItSnRK2.1 from Isatis tinctoria [J]. Biotechnol Bull, 2018, 34(1): 119-128. | |
| [29] | Mullet J, Morishige D, McCormick R, et al. Energy sorghum‒a genetic model for the design of C4 grass bioenergy crops [J]. J Exp Bot, 2014, 65(13): 3479-3489. |
| [30] | Xie Q, Xu ZH. Sustainable agriculture: from sweet sorghum planting and ensiling to ruminant feeding [J]. Mol Plant, 2019, 12(5): 603-606. |
| [31] | Wei CZ, Gao L, Xiao RX, et al. Complete telomere-to-telomere assemblies of two sorghum genomes to guide biological discovery [J]. iMeta, 2024, 3(2): e193. |
| [32] | Kobayashi Y, Yamamoto S, Minami H, et al. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid [J]. Plant Cell, 2004, 16(5): 1163-1177. |
| [33] | Long TD, Xu BJ, Hu YF, et al. Genome-wide identification of ZmSnRK2 genes and functional analysis of ZmSnRK2.10 in ABA signaling pathway in maize (Zea mays L) [J]. BMC Plant Biol, 2021, 21(1): 309. |
| [34] | Varoquaux N, Cole B, Gao C, et al. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses [J]. Proc Natl Acad Sci USA, 2019, 116(52): 27124-27132. |
| [35] | Chen CX, Shang XL, Sun MY, et al. Comparative transcriptome analysis of two sweet sorghum genotypes with different salt tolerance abilities to reveal the mechanism of salt tolerance [J]. Int J Mol Sci, 2022, 23(4): 2272. |
| [36] | 山仑, 徐炳成. 论高粱的抗旱性及在旱区农业中的地位 [J]. 中国农业科学, 2009, 42(7): 2342-2348. |
| Shan L, Xu BC. Discussion on drought resistance of sorghum and its status in agriculture in arid and semiarid regions [J]. Sci Agric Sin, 2009, 42(7): 2342-2348. | |
| [37] | Zhang HL, Yu FF, Xie P, et al. A Gγ protein regulates alkaline sensitivity in crops [J]. Science, 2023, 379(6638): eade8416. |
| [38] | Lou DJ, Wang HP, Yu DQ. The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice [J]. BMC Plant Biol, 2018, 18(1): 203. |
| [39] | Song XQ, Yu X, Hori C, et al. Heterologous overexpression of poplar SnRK2 genes enhanced salt stress tolerance in Arabidopsis thaliana [J]. Front Plant Sci, 2016, 7: 612. |
| [40] | Feng JL, Wang LZ, Wu YN, et al. TaSnRK2.9, a sucrose non-fermenting 1-related protein kinase gene, positively regulates plant response to drought and salt stress in transgenic tobacco [J]. Front Plant Sci, 2019, 9: 2003. |
| [1] | ZHAO Qiang, CHEN Si-yu, PENG Fang-li, WANG Can, GAO Jie, ZHOU Ling-bo, ZHANG Guo-bing, JIANG Yu-wen, SHAO Ming-bo. Effects of Intercropping and Nitrogen Application on the Diversity and Functions of Soil Bacteria around Sorghum Rhizosphere [J]. Biotechnology Bulletin, 2025, 41(6): 307-316. |
| [2] | LIU Zhuo-jun, CHAI Wen-ting, REN Yi-le, WANG Xin-yu, ZHU Li-xun, ZHAO Shan-shan, YANG Bo-hui, FAN Jia-li, LI Xin-feng, ZHAO Wei-jun, LYU Jin-hui, ZHANG Chun-lai. Analysis on Expression and DNA Variation of TGA Genes in Sorghum (Sorghum bicolor) in Response to Sporisorium reilianum Infection [J]. Biotechnology Bulletin, 2025, 41(5): 90-103. |
| [3] | LIU Tong-tong, LI Xiao-hui, YANG Jun-long, CHEN Wang, YU Meng, WANG Chao-fan, WANG Feng-ru, KE Shao-ying. Functional Study on ZmSTART1 Regulation of Maize Vascular Bundle Formation [J]. Biotechnology Bulletin, 2025, 41(4): 115-122. |
| [4] | DU Pin-ting, WU Guo-jiang, WANG Zhen-guo, LI Yan, ZHOU Wei, ZHOU Ya-xing. Identification and Expression Analysis of CPP Gene Family in Sorghum [J]. Biotechnology Bulletin, 2025, 41(1): 132-142. |
| [5] | GAO Yu-kun, ZHANG Jian-dong, YANG Pu-yuan, CHEN Dong-ming, WANG Zhi-bo, TIAN Yi-jin, Zakey Eldinn. E. A. Khlid, CUI Jiang-hui, CHANG Jin-hua. Responses of Sorghum Rhizosphere Soil Bacterial Communities to Salt Stress [J]. Biotechnology Bulletin, 2024, 40(4): 203-216. |
| [6] | ZHANG Yi-heng, LIU Jia-zheng, WANG Xue-chen, SUN Zheng-zhe, XUE Ya-jun, WANG Pei, HAN Hua, ZHENG Hong-wei, LI Xiao-juan. Dynamic Changes of Arabidopsis Endoplasmic Reticulum Based on Enhanced Super-resolution Images [J]. Biotechnology Bulletin, 2024, 40(4): 67-76. |
| [7] | FAN Xin-qi, WANG Hai-yan, CHEN Jing, ZHANG Xiao-juan, GUO Qi, LIANG Du, ZHOU Fu-ping, NIE Meng-en, ZHANG Yi-zhong, LIU Qing-shan. Effects of EMS Mutagenesis on the Seeding Survival and Major Agronomic Traits of Sorghum in M1 Generation [J]. Biotechnology Bulletin, 2023, 39(7): 173-184. |
| [8] | XU Jian-xia, DING Yan-qing, FENG Zhou, CAO Ning, CHENG Bin, GAO Xu, ZOU Gui-hua, ZHANG Li-yi. QTL Mapping of Sorghum Plant Height and Internode Numbers Based on Super-GBS Technique [J]. Biotechnology Bulletin, 2023, 39(7): 185-194. |
| [9] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
| [10] | KONG De-zhen, DUAN Zhen-yu, WANG Gang, ZHANG Xin, XI Lin-qiao. Physiological Characteristics and Transcriptome Analysis of Sorghum bicolor × S. Sudanense Seedlings Under Salt-alkali Stress [J]. Biotechnology Bulletin, 2023, 39(6): 199-207. |
| [11] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
| [12] | WANG Chun-yu, LI Zheng-jun, WANG Ping, ZHANG Li-xia. Physiological and Biochemical Analysis of Drought Resistance in Sorghum Cuticular Wax-deficient Mutant sb1 [J]. Biotechnology Bulletin, 2023, 39(5): 160-167. |
| [13] | MA Qiu-yu, YUAN Fang. Research Progress in Salt Gland Secretion and Development in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 74-85. |
| [14] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
| [15] | ZHOU Shi-chen, YI Zhi-ben, WANG Xin-yi, YANG Xiao-ying, SUN Li-na, LUAN Wei-jiang, LIANG Shan-shan. Genetic Analysis and Gene Mapping of Sorghum Double-grain Mutant Dgs [J]. Biotechnology Bulletin, 2022, 38(7): 171-177. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||