Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (11): 143-152.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0690
HE Ting-yu(
), PANG Yu, ZHANG Yuan-yang, SUN Xue(
), LI Yu, LU Fu-ping, LI Qing-gang(
)
Received:2025-06-30
Online:2025-11-26
Published:2025-12-09
Contact:
SUN Xue, LI Qing-gang
E-mail:hetingyu2023@163.com;sunxue@tust.edu.cn;liqinggang@tust.edu.cn
HE Ting-yu, PANG Yu, ZHANG Yuan-yang, SUN Xue, LI Yu, LU Fu-ping, LI Qing-gang. Construction of a High-production Lacto -N-triose Ⅱ-producing Escherichia coli Strain[J]. Biotechnology Bulletin, 2025, 41(11): 143-152.
融合蛋白名称 Name of fusion protein | 理论等电点 Theoretical isoelectric point | 负电荷氨基酸残基总数 Total number of negatively charged amino acid residues | 正电荷氨基酸残基总数 Total number of positively charged amino acid residues | 总平均亲水性 Overall average hydrophilicity |
|---|---|---|---|---|
| TrxA-Nm58LgtAR13H,L24M,R205C | 6.48 | 64 | 61 | -0.412 |
| SUMO-Nm58LgtAR13H,L24M,R205C | 6.38 | 69 | 65 | -0.621 |
| GST-Nm58LgtAR13H,L24M,R205C | 6.99 | 81 | 80 | -0.478 |
| MBP-Nm58LgtAR13H,L24M,R205C | 6.24 | 99 | 93 | -0.441 |
| AHP-Nm58LgtAR13H,L24M,R205C | 7.75 | 50 | 51 | -0.552 |
Table 1 Physicochemical properties of fusion proteins
融合蛋白名称 Name of fusion protein | 理论等电点 Theoretical isoelectric point | 负电荷氨基酸残基总数 Total number of negatively charged amino acid residues | 正电荷氨基酸残基总数 Total number of positively charged amino acid residues | 总平均亲水性 Overall average hydrophilicity |
|---|---|---|---|---|
| TrxA-Nm58LgtAR13H,L24M,R205C | 6.48 | 64 | 61 | -0.412 |
| SUMO-Nm58LgtAR13H,L24M,R205C | 6.38 | 69 | 65 | -0.621 |
| GST-Nm58LgtAR13H,L24M,R205C | 6.99 | 81 | 80 | -0.478 |
| MBP-Nm58LgtAR13H,L24M,R205C | 6.24 | 99 | 93 | -0.441 |
| AHP-Nm58LgtAR13H,L24M,R205C | 7.75 | 50 | 51 | -0.552 |
Fig. 1 Analysis of hydrophilicity and hydrophobicity of fusion proteinsA-E: Indicate the hydrophilicity analysis of the fusion proteins TrxA-Nm58LgtAR13H,L24M,R205C, SUMO-Nm58LgtAR13H,L24M,R205C, GST-Nm58LgtAR13H,L24M,R205C, MBP-Nm58LgtAR13H,L24M,R205C and AHP-Nm58LgtAR13H,L24M,R205C with solubility-promoting tags, respectively. In the figures, the vertical axis score indicates the hydrophobicity value. Positive values indicate hydrophobic regions, and negative values indicate hydrophilic regions. The horizontal axis indicates the position of the amino acid in the protein sequence
Fig. 2 Influence of different solubility-promoting protein tags on the production of LNT ⅡA: Schematic diagram of fusion protein; B: growth and LNT Ⅱ production of strains Q1 to Q5; C: fusion protein gel diagram. M: Marker; 1: Nm58LgtAR13H,L24M,R205C; 2: TrxA-Nm58LgtAR13H,L24M,R205C; 3: SUMO-Nm58LgtAR13H,L24M,R205C; 4: GST-Nm58LgtAR13H,L24M,R205C; 5: MBP-Nm58LgtAR13H,L24M,R205C; 6: AHP-Nm58LgtAR13H,L24M,R205C
Fig. 4 Influences of the expression intensities of LgtA and GlmS* on the synthesis of LNT ⅡA: Schematic diagrams of plasmids overexpressing MBP-Nm58LgtAR13H,L24M,R205C and GlmS* with various RBSs. B: Growth and LNT Ⅱ production of strains Z1 to Z36
Fig. 5 Influences of GlnA from different sources on the synthesis of LNT ⅡA: Schematic diagram of overexpressing GlnA from different sources. B: Growth and LNT Ⅱ production of strains G0 to G2
| [1] | 胡多多. 代谢工程改造大肠杆菌生产乳酰-N-三糖Ⅱ [D]. 无锡: 江南大学, 2022. |
| Hu DD. Production of lactoyl-N-trisaccharide Ⅱ by metabolic engineering transformation of Escherichia coli [D]. Wuxi: Jiangnan University, 2022. | |
| [2] | 孟佳炜, 朱莺莺, 罗国聪, 等. 乳酰-N-新四糖的生理功能、生物合成及其衍生化研究进展 [J]. 中国食品学报, 2022, 22(3): 320-328. |
| Meng JW, Zhu YY, Luo GC, et al. Recent advances on physiological function, biosynthesis, and derivatization of Lacto-N-neotetraose [J]. J Chin Inst Food Sci Technol, 2022, 22(3): 320-328. | |
| [3] | 李凤仪. 利用工程化乳酸克鲁维酵母实现人乳寡糖乳-N-二糖和乳-N-三糖的高效合成 [D]. 济南:山东大学, 2024. |
| Li FY. Engineering Kluyveromyces lactis for producing human milk oligosaccharides lacto-N-biose and lacto-N-triose Ⅱ efficiently [D]. Jinan: Shandong University, 2024. | |
| [4] | Blixt O, van Die I, Norberg T, et al. High-level expression of the Neisseria meningitidis lgtA gene in Escherichia coli and characterization of the encoded N-acetylglucosaminyltransferase as a useful catalyst in the synthesis of GlcNAc beta 1—>3Gal and GalNAc beta 1—>3Gal linkages [J]. Glycobiology, 1999, 9(10): 1061-1071. |
| [5] | 刘丹, 梁山泉, 闫巧娟, 等. 基于模块优化强化大肠杆菌合成乳糖-N-新四糖的研究 [J]. 食品科学技术学报, 2024, 42(2): 75-83. |
| Liu D, Liang SQ, Yan QJ, et al. Study on enhancement of lacto-N-neotetraose synthesis in Escherichia coli based on module optimization [J]. J Food Sci Technol, 2024, 42(2): 75-83. | |
| [6] | Hu DD, Wu H, Zhu YY, et al. Engineering Escherichia coli for highly efficient production of lacto-N-triose Ⅱ from N-acetylglucosamine, the monomer of chitin [J]. Biotechnol Biofuels, 2021, 14(1): 198. |
| [7] | Lin L, Gong MY, Liu YF, et al. Combinatorial metabolic engineering of Escherichia coli for de novo production of 2'-fucosyllactose [J]. Bioresour Technol, 2022, 351: 126949. |
| [8] | 胡苗苗. 代谢工程改造大肠杆菌产乳酰-N-新四糖和乳酰-N-四糖 [D]. 无锡: 江南大学, 2024. |
| Hu MM. Metabolic engineering of Escherichia coli for the production of lacto-N-neotetraose and lacto-N-tetraose [D]. Wuxi: Jiangnan University, 2024. | |
| [9] | 吴凤礼, 王晓霜, 宋富强, 等. 芳香族化合物微生物代谢工程研究进展 [J]. 生物工程学报, 2021, 37(5): 1771-1793. |
| Wu FL, Wang XS, Song FQ, et al. Advances in metabolic engineering for the production of aromatic chemicals [J]. Chin J Biotechnol, 2021, 37(5): 1771-1793. | |
| [10] | Fierfort N, Samain E. Genetic engineering of Escherichia coli for the economical production of sialylated oligosaccharides [J]. J Biotechnol, 2008, 134(3/4): 261-265. |
| [11] | Li JZ, He TY, Zhao JJ, et al. Combination of metabolic engineering and high-throughput screening to realize high-producing lacto-N-triose Ⅱ in Escherichia coli [J]. J Agric Food Chem, 2025, 73(28): 17769-17775. |
| [12] | Yu J, Shin J, Park M, et al. Engineering of α-1, 3-fucosyltransferases for production of 3-fucosyllactose in Escherichia coli [J]. Metab Eng, 2018, 48: 269-278. |
| [13] | Choi YH, Kim JH, Park BS, et al. Solubilization and iterative saturation mutagenesis of α1, 3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency [J]. Biotechnol Bioeng, 2016, 113(8): 1666-1675. |
| [14] | Wray LV Jr, Fisher SH. Functional roles of the conserved Glu304 loop of Bacillus subtilis glutamine synthetase [J]. J Bacteriol, 2010, 192(19): 5018-5025. |
| [15] | 黎玉. 基于多细胞耦合催化策略的乳酰-N-三糖 Ⅱ合成研究[D]. 无锡:江南大学, 2023. |
| Li Y. Synthesis of lacto-N-triose Ⅱ based onmulti-cell coupling catalysis strategy [D]. Wuxi: Jiangnan University, 2023. | |
| [16] | 张景, 潘玲, 毛威威, 等. 鸡HNF 3β重组蛋白在大肠杆菌中的高效表达及其抗体制备 [J]. 农业生物技术学报, 2022, 30(4): 809-816. |
| Zhang J, Pan L, Mao WW, et al. High-level expression of chicken(Gallus gallus) HNF 3β recombinant protein in Escherichia coli and preparation of its antibody [J]. J Agric Biotechnol, 2022, 30(4): 809-816. | |
| [17] | 苗朝悦, 杜乐, 王佳琦, 等. 重组蛋白质在大肠杆菌体系中的可溶性表达策略 [J]. 中国生物工程杂志, 2023, 43(9): 33-45. |
| Miao ZY, Du L, Wang JQ, et al. Soluble expression strategies for production of recombinant proteins in Escherichia coli [J]. China Biotechnol, 2023, 43(9): 33-45. | |
| [18] | 田顺立, 郑春阳. 重组角质细胞生长因子(KGF)的原核表达及优化 [J]. 安徽农业科学, 2018, 46 (33): 71-74. |
| Tian SL, Zheng CY. Expression and optimization of recombinant keratinocyte growth factor(KGF) in E.coli [J]. J Anhui Agric Sci, 2018, 46(33): 71-74. | |
| [19] | 周生瑞, 郑依琳, 候志亮, 等. 多策略组合优化大肠杆菌高效表达贻贝足丝蛋白Mcofp-3 [J/OL]. 食品与发酵工业, 2025. DOI: 10.13995/j.cnki.11-1802/ts.042554 . |
| Zhou SR, Zheng YL, Hou ZL, et al. Optimization of multi-strategy combination for efficient expression of mussel foot protein mcofp-3 in E . coli [J/OL]. Food Ferment Ind, 2025. DOI: 10.13995/j.cnki.11-1802/ts.042554 . | |
| [20] | Waugh DS. The remarkable solubility-enhancing power of Escherichia coli maltose-binding protein [J]. Postepy Biochem, 2016, 62(3): 377-382. |
| [21] | Li QG, Liu C, He JH, et al. Construction and application of 3-fucosyllactose whole-cell biosensor for high-throughput screening of overproducers [J]. Bioresour Technol, 2024, 402: 130798. |
| [22] | 朱莺莺. 基于代谢工程的乳酰-N-新四糖和乳酰-N-四糖的高效生物合成研究 [D]. 无锡:江南大学, 2024. |
| Zhu YY. Efficient biosynthesis of lacto-N-neotetraose and lacto-N-tetraose based on metabolic engineering [D]. Wuxi: Jiangnan University, 2024. | |
| [23] | 王源. 代谢工程改造枯草芽孢杆菌合成番茄红素 [D]. 无锡:江南大学, 2025. |
| Wang Y. Metabolic engineering for the synthesis of lycopene in Bacillus subtilis [D]. Wuxi: Jiangnan University, 2025. | |
| [24] | Sun X, Peng ZT, Li C, et al. Combinatorial metabolic engineering and tolerance evolving of Escherichia coli for high production of 2'-fucosyllactose [J]. Bioresour Technol, 2023, 372: 128667. |
| [25] | Lv QL, Hu MK, Tian LZ, et al. Enhancing l-glutamine production in Corynebacterium glutamicum by rational metabolic engineering combined with a two-stage pH control strategy [J]. Bioresour Technol, 2021, 341: 125799. |
| [26] | 杨佳瑶, 唐霓, 汪凯. 己糖胺生物合成途径代谢酶与OGT介导的O-GlcNAc修饰在肿瘤中的研究进展[J]. 重庆医科大学学报, 2023, 48 (11): 1290-1295. |
| Yang JY, Tang N, Wang K. Advances in metabolic enzymes in the hexosamine biosynthetic pathway and OGT-mediated O-GlcNAc modification in tumors [J]. J Chongqing Med Univ, 2023, 48 (11): 1290-1295. | |
| [27] | Zhu YY, Luo GC, Li ZY, et al. Efficient biosynthesis of lacto-N-neotetraose by a novel β-1, 4-galactosyltransferase from Aggregatibacter actinomycetemcomitans NUM4039 [J]. Enzyme Microb Technol, 2022, 153: 109912. |
| [28] | 熊赢, 徐宁, 黄君慧, 等. 灭螺真菌橘灰青霉菌Z12株培养基及发酵条件优化[J]. 中国血吸虫病防治杂志, 2023, 35(2): 137-146, 205. |
| Xiong Y, Xu N, Huang JH, et al. Optimization of the medium and fermentation condition for the Penicillium aurantiocandidum Z12 strain with molluscicidal actions against Oncomelania hupensis [J]. Chin J Schisto Control, 2023, 35(2): 137-146, 205. | |
| [29] | Xu FX, Cao H, Cui XW, et al. Optimization of fermentation condition for echinacoside yield improvement with Penicillium sp. H1, an endophytic fungus isolated from Ligustrum lucidum ait using response surface methodology [J]. Molecules, 2018, 23(10): 2586. |
| [30] | 骆叶姣, 胡苗苗, 李梦丽, 等. 乳酰-N-新四糖的生物合成菌株构建及发酵条件研究 [J]. 食品与发酵工业, 2023, 49(21): 23-29. |
| Luo YJ, Hu MM, Li ML, et al. Construction of lacto-N-neotetraose biosynthesis strain and study on fermentation conditions [J]. Food Ferment Ind, 2023, 49(21): 23-29. | |
| [31] | Gomes L, Monteiro G, Mergulhão F. The impact of IPTG induction on plasmid stability and heterologous protein expression by Escherichia coli biofilms [J]. Int J Mol Sci, 2020, 21(2): 576. |
| [32] | 张天鹏, 杨兴洪. 甜菜碱提高植物抗逆性及促进生长发育研究进展 [J]. 植物生理学报, 2017, 53(11): 1955-1962. |
| Zhang TP, Yang XH. Research on the mechanism of glycinebetaine regulating plants stress resistance and development [J]. Plant Physiol J, 2017, 53(11): 1955-1962. | |
| [33] | 赵琳琳. 脱氮假单胞菌产维生素B12发酵过程中甜菜碱作用机理及其补料策略的研究 [D]. 广州:华南理工大学, 2012. |
| Zhao LL. Roles of betaine in vitamin B12 fermentation by Pseudomonas denitrificans and its feeding strategy optimization [D]. Guangzhou: South China University of Technology, 2012. | |
| [34] | 范晓光, 张通, 李杰, 等. 甜菜碱在微生物中的代谢及应用研究进展 [J]. 发酵科技通讯, 2018, 47(3): 151-156, 188. |
| Fan XG, Zhang T, Li J, et al. Betaine metabolism in microorganism and its application [J]. Bull Ferment Sci Technol, 2018, 47(3): 151-156, 188. | |
| [35] | Zhang MW, Zhang K, Liu TL, et al. High-level production of lacto- N-neotetraose in Escherichia coli by stepwise optimization of the biosynthetic pathway [J]. J Agric Food Chem, 2023, 71(43): 16212-16220. |
| [1] | YAN Meng-yang, LIANG Xiao-yang, DAI Jun-ang, ZHANG Yan, GUAN Tuan, ZHANG Hui, LIU Liang-bo, SUN Zhi-hua. Screening of Amoxicillin-degrading Bacteria and Study on Its Degradation Mechanisms [J]. Biotechnology Bulletin, 2025, 41(9): 314-325. |
| [2] | HUANG Xu-sheng, ZHOU Ya-li, CHAI Xu-dong, WEN Jing, WANG Ji-ping, JIA Xiao-yun, LI Run-zhi. Cloning of Plastidial PfLPAT1B Gene from Perilla frutescens and Its Functional Analysis in Oil Biosynthesis [J]. Biotechnology Bulletin, 2025, 41(7): 226-236. |
| [3] | WEI Min-hua, LI Xiao-tong, JIANG Ya-wen, ZHOU Piao-piao, WANG Kai, SUN Hao, LU Nan, ZHANG Cheng-lin. Systems Metabolic Engineering for Highly Efficient L-isoleucine Production in Escherichia coli [J]. Biotechnology Bulletin, 2025, 41(11): 110-120. |
| [4] | YANG Yi-chen, ZHU Hong-yu, SU Xiao-yun, WANG Yuan, LUO Hui-ying, TIAN Jian, YAO Bin, HUANG Huo-qing, ZHANG Jie. Construction of an Efficient Microbial Cell Factory for Inositol Production from Glucose-fructose Syrup [J]. Biotechnology Bulletin, 2025, 41(11): 121-133. |
| [5] | RAO Jun, ZHAO Chen, LI Duan-hua, LIAO Hao, HUANG Jia-yu, WANG Lu. Application of Auto-induction Strategy in Ergothioneine Biosynthesis [J]. Biotechnology Bulletin, 2025, 41(1): 333-346. |
| [6] | ZHANG Jing-an, HU Xiao-long, CAO Bei-bei, LIAO Min, SHU Chang-long, ZHANG Jie, WANG Kui, CAO Hai-qun. Construction and Characterization of Rapid Visual Expression Vector for Bacillus thuringiensis [J]. Biotechnology Bulletin, 2025, 41(1): 95-102. |
| [7] | WANG Zhou, YU Jie, WANG Jin-hua, WANG Yong-ze, ZHAO Xiao. Anaerobic Expression of Lactate Dehydrogenase to Improve the D-lactic Acid Optical Purity Procluced by Escherichia coli [J]. Biotechnology Bulletin, 2024, 40(5): 290-299. |
| [8] | ZHUANG Ke, LIANG Zhi-xuan, HE Ying-ting, XIE Qiu-ling. Transfer of Antibiotic-resistance Gene AmpR by Escherichia coli DH5α Through Outer Membrane Vesicles [J]. Biotechnology Bulletin, 2024, 40(12): 275-281. |
| [9] | YANG Hong-yan, HAN Xiao, YANG Jian-jun. Scaling up Production of pDNA Plasmids in Disposable Bioreactors [J]. Biotechnology Bulletin, 2024, 40(1): 168-175. |
| [10] | CHENG Ya-nan, ZHANG Wen-cong, ZHOU Yuan, SUN Xue, LI Yu, LI Qing-gang. Synthetic Pathway Construction of Producing 2'-fucosyllactose by Lactococcus lactis and Optimization of Fermentation Medium [J]. Biotechnology Bulletin, 2023, 39(9): 84-96. |
| [11] | CHEN Cai-ping, REN Hao, LONG Teng-fei, HE Bing, LU Zhao-xiang, SUN Jian. Research Advances in the Treatment of Inflammation Bowel Disease Using Escherichia coli Nissle 1917 [J]. Biotechnology Bulletin, 2023, 39(6): 109-118. |
| [12] | LI Yan-xia, WANG Jin-peng, FENG Fen, BAO Bin-wu, DONG Yi-wen, WANG Xing-ping, LUORENG Zhuo-ma. Effects of Escherichia coli Dairy Cow Mastitis on the Expressions of Milk-producing Trait Related Genes [J]. Biotechnology Bulletin, 2023, 39(2): 274-282. |
| [13] | WU Li-dan, RAN Xue-qin, NIU Xi, HUANG Shi-hui, LI Sheng, WANG Jia-fu. Genome Comparison and Virulence Factor Analysis of Pathogenic Escherichia coli from Porcine [J]. Biotechnology Bulletin, 2023, 39(12): 287-299. |
| [14] | LI Yi-ya, WU Yi-fan, DING Neng-shui, FAN Xiao-ping, CHEN Fan. Establishment of a Luciferase-assisted Quantitative Method for Measuring Ultrasonic Disruption of Escherichia coli Cells [J]. Biotechnology Bulletin, 2023, 39(12): 90-98. |
| [15] | TANG Rui-qi, ZHAO Xin-qing, ZHU Du, WANG Ya. Stress Tolerance of Escherichia coli to Inhibitors in Lignocellulosic Hydrolysates [J]. Biotechnology Bulletin, 2023, 39(11): 205-216. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||