[1] Kerstiens G. Water transport in plant cuticles :an update[J]. J Exp Bot, 2006, 57 :2493-2499.
[2] Joubes J, Raffaele S, Bourdenx B, et al. The VLCFA elongase gene family in Arabidopsis thaliana :phylogenetic analysis, 3D modelling and expression profiling[J]. Plant Mol Biol, 2008, 67 :547-566.
[3] Kunst L, Samuels AL. Biosynthesis and secretion of plant cuticular wax[J]. Prog Lipid Res, 2003, 42(1):51-80.
[4] Tehlivets O, Scheuringer K, Kohlwein SD. Fatty acid synthesis and elongation in yeast[J]. Biochim Biophys Acta, 2007, 1771 :255- 270.
[5] Samuels L, Kunst L, Jetter R. Sealing plant surfaces :cuticular wax formation by epidermal cells[J]. Annu Rev Plant Biol, 2008, 59 : 683-707.
[6] Kunst L, Samuels L. Plant cuticles shine :advances in wax biosynthesis and export[J]. Curr Opin Plant Biol, 2009, 12 :721-727.
[7] Puyaubert J, Dieryck W, Costaglioli P, et al. Temporal gene expression of 3-ketoacyl-CoA reductase is different in high and in low erucic acid Brassica napus cultivars during seed development[J].
Biochim Biophys Acta, 2005, 1687(3):152-163.
[8] Millar AA, Kunst L. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme[J]. Plant J, 1997, 12 :121-131.
[9] Beaudoin F, Wu JZ, Li FL, et al. Functional characterization of the Arabidopsis β-Ketoacyl-Coenzyme A reductase candidates of the fatty acid elongase[J]. Plant Physiology, 2009, 150 :1174-1191.
[10] Xu X, Dietrich CR, Delledonne M, et al. Sequence analysis of the cloned glossy8 gene of maize suggests that it may code for a beta-ketoacyl reductase required for the biosynthesis of cuticular waxes[J]. Plant Physiol, 1997, 115(2):501-510.
[11] Xu X, Dietrich CR, Lessire R, et al. The endoplasmic reticulumassociated maize GL8 protein is a component of the acyl-coenzyme elongase ivolved in the production of cuticular waxes[J]. Plant Physiol, 2002, 128(3):924-934.
[12] Dietrich CR, Perera M, Yandeau-Nelson MD, et al. Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize(Zea mays L.) development[J]. Plant J, 2005, 42 :844-861.
[13] Beaudoin F, Gable K, Sayanova O, et al. A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal beta-keto-reductase[J]. J Biol Chem, 2002, 277(13): 11481-11488.
[14] Qin YM, Ma Pujol F, Shi YH, et al. Cloning and functional characterization of two cDNAs encoding NADPH-dependent 3-ketoacyl-CoA reductase from developing cotton fibers[J]. Cell Res, 2005, 15(6):465-473.
[15] 赵可夫, 李法曾. 中国盐生植物[M]. 北京:科学出版社, 1999.
[16] Zhu JK. Plant salt tolerance[J]. Trends Plant Sci, 2001, 6 :66- 71.
[17] Taji T, Seki M, Satou M, et al. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray[J]. Plant Physiol, 2004, 135 :1697-709.
[18] Inan G, Zhang Q, Li PH, et al. Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles[J].
Plant Physiol, 2004, 135 :1718-1737.
[19] Feng YJ, Zhang HM, Jiang MG, et al. In silico cloning of ful length cDNA of Cryphonectria parasitica ubiquitin conjugated enzyme gene(CpUBC)[J]. Chinese J Bioinformatics, 2004, 2 :5-9.
[20] 王琦, 李玮妮, 王荣. 蜜蜂TPI 基因克隆与生物信息学预测[J].
生物技术通报, 2011(9):108-113.
[21] Kosma DK, Jenks MA. Eco-physiological and molecular-genetic determinants of plant cuticle function in drought and salt stress tolerance.
Advances in Molecular Breeding toward Drought and Salt Tolerant Crops[M]. The Netherlands :Springer, 2007 :91-120.
[22] Kosma DK, Bourdenx B, Bernard A, et al. The impact of water deficiency on leaf cuticle lipids of Arabidopsis[J]. Plant Physiology, 2009, 151 :1918-1929. |