[1] Tijsterman M, Ketting RF, Plasterk RH. The genetics of RNA silencing[J]. Annu Rev Genet, 2002, 36:489-519. [2] Tsygankov AY. Current developments in anti-HIV/AIDS gene therapy[J]. Curr Opin Investig Drugs, 2009, 10(2):137-149. [3] Singh SK, Gaur RK. Progress towards therapeutic application of RNA interference for HIV infection[J]. BioDrugs, 2009, 23(5):269-276. [4] Chan JK, Greene WC. Dynamic roles for NF-κB in HTLV-I and HIV-1 retroviral pathogenesis[J]. Immunol Rev, 2012, 246(1):286-310. [5] Das AT, Brummelkamp TR, Westerhout EM, et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition[J]. J Virol, 2004, 78(5):2601-2605. [6] Pusch O, Boden D, Silbermann R, et al. Nucleotide sequence homology requirements of HIV-1-specific short hairpin RNA[J]. Nucleic Acids Res, 2003, 31(22):6444-6449. [7] Rossi JJ, June CH, Kohn DB. Genetic therapies against HIV[J]. Nat Biotechnol, 2007, 25(12):1444-1454. [8] Shah PS, Pham NP, Schaffer DV. HIV develops indirect cross-resistance to combinatorial RNAi targeting two distinct and spatially distant sites[J]. Mol Ther, 2012, 20(4):840-848. [9] Brass AL, Dykxhoorn DM, Benita Y, et al. Identification of host proteins required for HIV infection through a functional genomic screen[J]. Science, 2008, 319(5865):921-926. [10] K?nig R, Zhou Y, Elleder D, et al. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication[J]. Cell, 2008, 135(1):49-60. [11] Zhou H, Xu M, Huang Q, et al. Genome-scale RNAi screen for host factors required for HIV replication[J]. Cell Host Microbe, 2008, 4(5):495-504. [12] Dziuba N, Ferguson MR, O'Brien WA, et al. Identification of cellu-lar proteins required for replication of human immunodeficiency virus type 1[J]. AIDS Res Hum Retroviruses, 2012, 28(10):1329-1339. [13] Kok KH, Lei T, Jin DY. siRNA and shRNA screens advance key understanding of host factors required for HIV-1 replication[J]. Retrovirology, 2009, 6:78. [14] Pache L, K?nig R, Chanda SK. Identifying HIV-1 host cell factors by genome-scale RNAi screening[J]. Methods, 2011, 53(1):3-12. [15] Eekels JJ, Sagnier S, Geerts D, et al. Inhibition of HIV-1 replication with stable RNAi-mediated knockdown of autophagy factors[J]. Virol J, 2012, 9(1):69. [16] De Iaco A, Luban J. Inhibition of HIV-1 infection by TNPO3 depletion is determined by capsid and detectable after viral cDNA enters the nucleus[J]. Retrovirology, 2011, 8:98. [17] Friedrich BM, Dziuba N, Li G, et al. Host factors mediating HIV-1 replication[J]. Virus Res, 2011, 161(2):101-114. [18] Kumar P, Ban HS, Kim SS, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice[J]. Cell, 2008, 134(4):577-586. [19] Song E, Zhu P, Lee SK, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors[J]. Nat Biotechnol, 2005, 23(6):709-717. [20] Kim SS, Peer D, Kumar P, et al. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice[J]. Mol Ther, 2010, 18(2):370-376. [21] Neff CP, Zhou J, Remling L, et al. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4+ T cell decline in humanized mice[J]. Sci Transl Med, 2011, 3(66):66ra6. [22] Zhou J, Rossi JJ. Aptamer-targeted RNAi for HIV-1 therapy[J]. Methods Mol Biol, 2011, 721:355-371. [23] Wheeler LA, Trifonova R, Vrbanac V, et al. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras[J]. J Clin Invest, 2011, 121(6):2401-2412. [24] Hütter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation[J]. N Engl J Med, 2009, 360(7):692-698. [25] Li MJ, Kim J, Li S, et al. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy[J]. Mol Ther, 2005, 12(5):900-909. [26] Walker JE, Chen RX, McGee J, et al. Generation of an HIV-1-resistant immune system with CD34(+) hematopoietic stem cells transduced with a triple-combination anti-HIV lentiviral vector[J]. J Virol, 2012, 86(10):5719-5729. [27] Bobadilla S, Sunseri N, Landau NR. Efficient transduction of myeloid cells by an HIV-1-derived lentiviral vector that packages the Vpx accessory protein[J]. Gene Ther, 2012 doi:10.1038/gt.2012.61. [28] Zhang T, Cheng T, Wei L, et al. Efficient inhibition of HIV-1 replication by an artificial polycistronic miRNA construct[J]. Virol J, 2012, 9:118. [29] Chung J, Zhang J, Li H, et al. Endogenous MCM7 microRNA cluster as a novel platform to multiplex small interfering and nucleolar RNAs for combinational HIV-1 gene therapy[J]. Hum Gene Ther, 2012, 23(11):1200-1208. [30] Kiem HP, Wu RA, Sun G, et al. Foamy combinatorial anti-HIV vectors with MGMTP140K potently inhibit HIV-1 and SHIV replication and mediate selection in vivo[J]. Gene Ther, 2010, 17(1):37-49. [31] Low JT, Knoepfel SA, Watts JM, et al. SHAPE-directed discovery of potent shRNA inhibitors of HIV-1[J]. Mol Ther, 2012, 20(4):820-828. [32] Tyagi A, Ahmed F, Thakur N, et al. HIVsirDB:a database of HIV inhibiting siRNAs[J]. PLoS One, 2011, 6(10):e25917. |