Biotechnology Bulletin ›› 2013, Vol. 0 ›› Issue (8): 17-22.
• Review • Previous Articles Next Articles
Liu Jiajia, Zhang Yiting, Peng Hang, Liu Pengxia
Received:
2013-03-17
Revised:
2013-08-11
Online:
2013-08-11
Published:
2013-09-02
Liu Jiajia, Zhang Yiting, Peng Hang, Liu Pengxia. Advances in Cellular and Molecular Basis of Hematopoietic Stem Cell Niche[J]. Biotechnology Bulletin, 2013, 0(8): 17-22.
[1] Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell[J]. Blood Cells, 1978, 4(1-2):7-25. [2] Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche[J]. Nature, 2001, 414(6859):98-104. [3] Brodsky RA, Jones RJ. Aplasfic anemia[J]. Lancet, 2005, 365(9471):1647-1656. [4] Jamieson CH, Barroga CF, Vainchenker WP. Miscreant myeloproli-ferative disorder stem cells[J]. Leukemia, 2008, 22(11):2011-2019. [5] Tripodo C, DiBernardo A, Ternullo MP, et al. CD146+ bone marrow osteoprogenitors increase in the advanced stages of primary myelofibrosis[J]. Haematologica, 2009, 94(1):127-130. [6] Flynn CM, Kaufman DS. Donor cell leukemia:insight into cancer stem cells and the stem cell niche[J]. Blood, 2007, 109(7):2688-2692. [7] Lemischka IR. Microenvironmental regulation of hematopoietic stem cells[J]. Stem Cells, 1997, 15(suppl 1):63-68. [8] Taichman RS, Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor[J]. J Exp Med, 1994, 179(5):1677-1682. [9] Taichman RS, Reilly MJ, Emerson SG. Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures[J]. Blood, 1996, 87(2):518-524. [10] Zhang J, Niu C, Ye L, et al. Identification of the hematopoietic stem cell niche and control of the niche size[J]. Nature, 2003, 425(6960):836-841. [11] Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the hematopoietic stem cell niche[J]. Nature, 2003, 425(6960):841-846. [12] Visnjic D, Kalajzic Z, Rowe DW, et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency[J]. Blood, 2004, 103(9):3258-3264. [13] Kiel MJ, Radice GL, Morrison SJ. Lack of evidence that hematopoi-etic stem cells depend on N-cadherin- mediated adhesion to osteo-blasts for their maintenance[J]. Cell Stem Cell, 2007, 1(2):204-217. [14] Kiel MJ, Acar M, Radice GL, et al. Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance[J]. Cell Stem Cell, 2009, 4(2):170-179. [15] Kopp HG, Avecilla ST, Hooper AT, et al. The bone marrow vascular niche:home of HSC differentiation[J]. Physiology(Bethesda), 2005, 20:349-356. [16] Avecilla ST, Hattori K, Heissig B, et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis[J]. Nature Medicine, 2004, 10(1):64-71. [17] Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand[J]. Cell, 2002, 109:625-637. [18] Kiel MJ, Yilmaz OH, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells[J]. Cell, 2005, 121(7):1109-1121. [19] Salter AB, Meadows SK, Muramoto GG, et al. Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo[J]. Blood, 2009, 113(9):2104-2107. [20] 张滢, 宋国梁, 潘彬, 等. 内皮祖细胞对小鼠异基因骨髓移植后骨髓内皮细胞修复的作用研究[J]. 中华血液学杂志, 2012, 33(8):623-627. [21] Hooper AT, Butler JM, Nolan DJ, et al. Engraftment and reconstitu-tion of hematopoiesis is dependent on VEGFR2-mediated regenera-tion of sinusoidal endothelial cells[J]. Cell Stem Cell, 2009, 4(3):263-274. [22] Kobayashi H, Butler JM, O’Donnell R, et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells[J]. Nature Cell Biology, 2010, 12(11):1046-1056. [23] Ara T, Tokoyoda K, Sugiyama T, et al. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny[J]. Immunity, 2003, 19(2):257-267. [24] Tokoyoda K, Egawa T, Sugiyama T, et al. Cellular niches controlling B lymphocyte behavior within bone marrow during development[J]. Immunity, 2004, 20(6):707-718. [25] Sugiyama T, Kohara H, Noda M, et al. Maintenance of the hemato-poietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches[J]. Immunity, 2006, 25(6):977-988. [26] Nagasawa T. The chemokine CXCL12 and regulation of HSC and B lymphocyte development in the bone marrow niche[J]. Advances in Experimental Medicine Biology, 2007, 602:69-75. [27] Omatsu Y, Sugiyama T, Kohara H, et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche[J]. Immunity, 2010, 33(3):387-399. [28] Nagasawa T, Omatsu Y, Sugiyama T. Control of hematopoietic stem cells by the bone marrow stromal niche:the role of reticular cells[J]. Cell, 2011, 32(7):315-320. [29] Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche[J]. Nature, 2010, 466(7308):829-834. [30] 侯瑞琴, 王婧, 孔圆, 等. 单倍体相合造血干细胞移植联合间充质干细胞输注对患者造血微环境的影响[J]. 中国实验血液学杂志, 2010, 18(1):155-160. [31] Kollet O, Dar A, Shivtiel S, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells[J]. Nature Medicine, 2006, 12(6):657- 664. [32] Adams GB, Chabner KT, Alley IR, et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor[J]. Nature, 2006, 439(7076):599-603. [33] Lymperi S, Ersek A, Ferraro F, et al. Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo[J]. Blood, 2011, 117(5):1540-1549. [34] Chang MK, Raggatt LJ, Alexander KA, et al. Osteal tissue macrop-hages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo[J]. Journal Immunology, 2008, 181(2):1232-1244. [35] Winkler IG, Sims NA, Pettit AR, et al. Bone marrow macrophages maintain hematopoietic stem cell(HSC)niches and their depletion mobilizes HSCs[J]. Blood, 2010, 116(23):4815-4828. [36] Chow A, Lucas D, Hidalgo A, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche[J]. The Journal of Experimental Medicine, 2011, 208:261-271. [37] Yamazaki S, Ema H, Karlsson G, et al. Nonmyelinating schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche[J]. Cell, 2011, 147(5):1146-1158. [38] Yamazaki S, Iwama A, Takayanagi S, et al. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells[J]. The EMBO Journal, 2006, 25(15):3515-3523. [39] Yamazaki S, Iwama A, Takayanagi S, et al. TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation[J]. Blood, 2009, 113(6):1250-1256. [40] Fleming WH, Alpern EJ, Uchida N, et al. Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells[J]. The Journal of Cell Biology, 1993, 122(4):897-902. [41] Broxmeyer HE, Orschell CM, Clapp DW, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist[J]. J Exp Med, 2005, 201(8):1307-1318. [42] Nie Y, Han YC, Zou YR. CXCR4 is required for the quiescence of primitive hematopoietic cells[J]. The Journal of Experimental Biology, 2008, 205(4):777-783. [43] Moll NM, Ransohoff RM. CXCL12 and CXCR4 in bone marrow physiology[J]. Expert Rev Hematol, 2010, 3(3):315-322. [44] Artavanis TS, Artavanis-Tsakonas S, Rand MD, et al. Notch signa-ling:cell fate control and signal integration in development[J]. Science, 1999, 284(5415):770-776. [45] Stier S, Cheng T, Dombkowski D, et al. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favours lymphoid over myeloid lineage outcome[J]. Blood, 2002, 99(7):2369-2378. [46] Mancini SJ, Mantei N, Dumortier A, et al. Jagged1-dependent Notch signalling is dispensable for hematopoietic stem cell self-renewal and differentiation[J]. Blood, 2005, 105(6):2340-2342. [47] Maillard I, Koch U, Dumortier A, et al. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells[J]. Cell Stem Cell, 2008, 2(4):356-366. [48] Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic[J]. Nature, 2003, 423(6938):409-414. [49] Luis TC, Weerkamp F, Naber BA, et al. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation[J]. Blood, 2009, 113(3):546-554. [50] Murdoch B, Chadwick K, Martin M, et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo[J]. Proc Natl Acad Sci USA, 2003, 100(6):3422-3427. [51] Fleming HE, Janzen V, Lo Celso C, et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo[J]. Cell Stem Cell, 2008, 2(3):274-283. [52] Duncan AW, Rattis FM, DiMascio LN, et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance[J]. Nature Immunology, 2005, 6(3):314-322. [53] Kim JA, Kang YJ, Park G, et al. Identification of a stroma-mediated Wnt/beta-catenin signal promoting self-renewal of hematopoietic stem cells in the stem cell niche[J]. Stem Cells, 2009, 27(6):1318-1329. [54] Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche[J]. Cell, 2004, 118(2):149-161. [55] Gomei Y, Nakamura Y, Yoshihara H, et al. Functional differences between two Tie2 ligands, angiopoietin-1 and -2, in regulation of adult bone marrow hematopoietic stem cells[J]. Experimental Hematology, 2010, 38(2):82-89. [56] Goldman DC, Bailey AS, Pfaffle DL, et al. BMP4 regulates the hematopoietic stem cell niche[J]. Blood, 2009, 114(20):4393-4401. [57] Bhatia M, Bonnet D, Wu D, et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells[J]. J Exp Med, 1999, 189(7):1139-1148. [58] Trowbridge JJ, Scott MP, Bhatia M, et al. Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration[J]. Pro Natl Acad Sci USA, 2006, 103(38):14134-14139. [59] Gao J, Graves S, Koch U, et al. Hedgehog signaling is dispensable for adult hematopoietic stem cell function[J]. Cell Stem Cell, 2009, 4(6):548-558. [60] Hofmann I, Stover EH, Cullen DE, et al. Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis[J]. Cell Stem Cell, 2009, 4(6):559-567. |
[1] | DING Li, DU Ting-ting, TANG Qiong-ying, GAO Quan-xin, YI Shao-kui, YANG Guo-liang. Analyses of Endocrine Regulation and Expression of Genes Related to the Molting Signaling Pathway in the Molting Cycle of Macrobrachium rosenbergii [J]. Biotechnology Bulletin, 2023, 39(9): 300-310. |
[2] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
[3] | ZHOU Heng, XIE Yan-jie. Recent Progress in Oxidative Stress Signaling and Response in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 36-43. |
[4] | YU Bo, QIN Xiao-hui, ZHAO Yang. Mechanisms of Plant Sensing Drought Signals [J]. Biotechnology Bulletin, 2023, 39(11): 6-17. |
[5] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[6] | CHEN Hong-yan, LI Xiao-er, LI Zhong-guang. Sugar Signaling and Its Role in Plant Response to Environmental Stress [J]. Biotechnology Bulletin, 2022, 38(7): 80-89. |
[7] | HAN Zhi-ling, CHEN Qing, LIANG Xiao, WU Chun-ling, LIU Ying, WU Mu-feng, XU Xue-lian. Influence on Expression of Jasmonic Acid Signaling Pathway Gene in Tetranychus urticae Fed on Mite-resistant and Mite-susceptible Cassava Cultivars [J]. Biotechnology Bulletin, 2022, 38(6): 211-220. |
[8] | LI Yi-dan, SHAN Xiao-hui. Gibberellin Metabolism Regulation and Green Revolution [J]. Biotechnology Bulletin, 2022, 38(2): 195-204. |
[9] | NIE Jia-yue, YANG Wen-wen, FAN Hong-xia, WANG You-ping, WU De-wei. Recent Advances in Plant Pep Peptide [J]. Biotechnology Bulletin, 2021, 37(9): 219-225. |
[10] | LI Zhi-wen, LIU Pei-yan, CHEN Jian-song, LIAO Jin-ling, LIN Bo-rong, ZHUO Kan. Identification of Rice Genes Responding to Both the Nematode Effector MgMO237 and Its Interacting Protein OsCRRSP55 [J]. Biotechnology Bulletin, 2021, 37(7): 88-97. |
[11] | ZOU Chen-chen, RUAN Ling-wei, SHI Hong. Wnt Signaling Pathway and Innate Immunity of Invertebrate [J]. Biotechnology Bulletin, 2021, 37(5): 182-196. |
[12] | SUN Yu-ying, QIU Xue-mei, YE Xin-yu, LI Zhong-guang. Crosstalk Between Hydrogen Sulfide and Nitric Oxide Signaling in Plants [J]. Biotechnology Bulletin, 2020, 36(8): 153-161. |
[13] | ZHOU Li-ming, LU Xin-rui, MA Sheng-wei, FANG Wei. Functional Analysis of Calcium-dependent Protein Kinase CPK14 in Pollen Tube Growth [J]. Biotechnology Bulletin, 2019, 35(6): 55-61. |
[14] | CUI Rong-xiu, ZHANG Yi-wen, CHEN Xiao-qian, GU Cai-hong, ZHANG Quan. The Latest Research Progress on the Stress Responses of bZIP Involved in Plants [J]. Biotechnology Bulletin, 2019, 35(2): 143-155. |
[15] | ZHENG Wei-gang, JIN Ming-hui, SWAPAN Chakrabarty, XIAO Bin, XIAO Yu-tao, YUAN Hai-bin. Difference Expression Analysis in Different Tissues of Agrotis ipsilon Reveals the Possible Mechanism of Wing Development [J]. Biotechnology Bulletin, 2019, 35(10): 102-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||