Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (5): 37-44.
• Review and editorial • Previous Articles Next Articles
Lü Xiaomeng Hu Tong Yu Ting Cui Yanhua
Received:
2013-10-29
Online:
2014-05-23
Published:
2014-05-24
Lü Xiaomeng, Hu Tong, Yu Ting, Cui Yanhua. Advances of Heterogeneous Expression of Antimicrobial Peptides in Bacteria[J]. Biotechnology Bulletin, 2014, 0(5): 37-44.
[1] Drider D, Rebuffat S. Prokaryotic antimicrobial peptides:from genes to applications[M]. Springer New York Dordrecht Heidelberg London, 2011. [2] Parachin NS, Mulder KC, Viana AAB, et al. Expression systems for heterologous production of antimicrobial peptides[J]. Peptides, 2012, 38(2):446-456. [3] Sorensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli[J]. J Biotech-nol, 2005, 115(2):113-128. [4] Li P, Xu ZN, Fang XM, et al. Preferential codons enhancing expres-sion level of human beta- defensin-2 in recombinant Escherichia coli[J]. Protein & Peptide Letters, 2004, 11(4):229-344. [5] Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli[J]. Curr Opin Biotechnol, 1995, 6(5):494-500. [6] Huang L, Ching CB, Jiang R, et al. Production of bioactive human beta-defensin 5 and 6 in Escherichia coli by soluble fusion expression[J]. Protein Expr Purif, 2008, 61(2):168-174. [7] Wang A, Su Y, Wang S, et al. High efficiency preparation of bioactive human alpha-defensin 6 in Escherichia coli Origami(DE3)pLysS by soluble fusion expression[J]. Appl Microbiol Biotechnol, 2010, 87(5):1935-1942. [8] Wang Q, Zhu F, Xin Y, et al. Expression and purification of antimicrobial peptide buforin IIb in Escherichia coli[J]. Biotechnol Lett, 2011, 33(11):2121-2126. [9] Zhong Z, Xu Z, Peng L, et al. Tandem repeat mhBD2 gene enhance the soluble fusion expression of hBD2 in Escherichia coli[J]. Appl Microbiol Biotechnol, 2006, 71(5):661-667. [10] 沈益, 劳学刚, 耿伟, 等. 抗菌肽cecropin-Xm在大肠埃希菌中的串联表达与抑瘤作用[J]. 中国抗生素杂志, 2007, 32(12):757-761. [11] Rao X, Hu J, Li S, et al. Design and expression of peptide antibiotic hPAB-beta as tandem multimers in Escherichia coli[J]. Peptides, 2005, 26(5):721-729. [12] Li YF. Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli[J]. Biotechnol Appl Biochem, 2009, 54(1):1-9. [13] Li YF. Recombinant production of antimicrobial peptides in Escherichia coli:a review[J]. Protein Expr Purif, 2011, 80(2):260-267. [14] Peroutka IRJ, Orcutt SJ, Strickler JE, et al. SUMO fusion technology for enhanced protein expression and purification in prokaryotes and eukaryotes[J]. Methods Mol Biol, 2011, 705:15-30. [15] Fink J, Merrifield RB, Boman A, et al. The chemical synthesis of cecropin D and an analog with enhanced antibacterial activity[J]. J Biol Chem, 1989, 264(11):6260-6267. [16] Xu XX, Jin FL, Yu XQ, et al. High-level expression of the recombinant hybrid peptide cecropinA(1-8)-magainin2(1-12)with an ubiquitin fusion partner in Escherichia coli[J]. Protein Expr Purif, 2007, 55(1):175-182. [17] Bang SK, Kang CS, Han MD, et al. Expression of recombinant hybrid peptide hinnavin II/α-melanocyte-stimulating hormone in Escherichia coli:purification and characterization[J]. J Microbiol, 2010, 48(1):24-29. [18] Feng X, Liu C, Guo J, et al. Recombinant expression, purification, and antimicrobial activity of a novel hybrid antimicrobial peptide LFT33[J]. Appl Microbiol Biotechnol, 2012, 95(5):1191-1198. [19] 谢芳, 韩文瑜, 雷连成, 等. 牛蛙皮肤抗菌肽Ranalexin 基因的原核表达及其抑菌活性[J]. 浙江大学学报:农业与生命科学版, 2009, 35(1):27-32. [20] 韩宗玺, 马德莹, 刘胜旺, 等. 重组鸡抗菌肽Gallinacin-9的原核表达及其抗菌活性的鉴定[J]. 畜牧兽医学报, 2008, 39(10):1426-1431. [21] Tapia E, Montes C, Rebufel C, et al. Expression of an optimized Argopecten purpuratus antimicrobial peptide in E. coli and evaluation of the purified recombinant protein by in vitro challenges against important plant fungi[J]. Peptides, 2011, 9(32):1909-1916. [22] Wu MZ, Zhao L, Zhu L, et al. Expression and purification of chimeric peptide comprising EGFR B-cell epitope and measles virus fusion protein T-cell epitope in Escherichia coli[J]. Protein Expr Purif, 2013, 1(88):7-12. [23] 崔艳华, 徐德昌, 曲晓军. 乳酸菌基因组学研究进展[J]. 生物信息学, 2008, 6(2):85-89. [24] Chen R. Bacterial expression systems for recombinant protein production:E. coli and beyond[J]. Biotech Advances, 2012, 30(5):1102-1107. [25] Mierau I, Olieman K, Mond J, et al. Optimization of the Lactococcus lactis nisin controlled gene expression system NICE for industrial applications[J]. Microb Cell Fact, 2005, 4:16. [26] Christiaens H, Leer RJ, Pouwels PH. Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay[J]. Appl Environ Microbiol, 1992, 58(12):3792-3798. [27] Bolotin A, Wincker P, Mauger S, et al. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403[J]. Genome Res, 2001, 11(5):731-753. [28] Rodríguez JM, Martínez MI, Horn N, et al. Heterologous production of bacteriocins by lactic acid bacteria[J]. Int J Food Microbiol, 2003, 80(2):101-116. [29] Mathiesen G, Naml?s HM, Ris?en PA, et al. Use of bacteriocin promoters for gene expression in Lactobacillus plantarum C11[J]. J Appl Microbiol, 2004, 96(4):819-827. [30] Mathiesen G, Sveen A, Piard JC, et al. Heterologous protein secretion by Lactobacillus plantarum using homologous signal peptides[J]. J Appl Microbiol, 2008, 105(1):215-226. [31] S?rvig E, Mathiesen G, Naterstad K, et al. High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors[J]. Microbiology, 2005, 151, 2439-2449. [32] Klaenhammer T, Altermann E, Arigoni F, et al. Discovering lactic acid bacteria by genomics[J]. Antonie Van Leeuwenhoek, 2002, 82(1-4):29-58. [33] Peterbauer C, Maischberger T, Haltrich D. Food-grade gene expression in lactic acid bacteria[J]. Biotech J, 2011, 6(9):1147-1161. [34] van de Guchte M, van der Vossen JM, Kok J, et al. Construction of a lactococcal expression vector:expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis[J]. Appl Environ Microbiol, 1989, 55(1):224-228. [35] Gutiérrez J, Larsen R, Cintas LM, et al. High-level heterologous production and functional expression of the sec-dependent enterocin P from Enterococcus faecium P13 in Lactococcus lactis[J]. Appl Microbiol Biotechnol, 2006, 72(1):41-51. [36] Martín M, Gutiérrez J, Criado R, et al. Cloning, production and expression of the bacteriocin enterocin A produced by Enterococcus faecium PLBC21 in Lactococcus lactis[J]. Appl Microbiol Biotechnol, 2007, 76(3):667-675. [37] Jiménez JJ, Borrero J, Diep DB, et al. Cloning, production, and functional expression of the bacteriocin sakacin A(SakA)and two SakA-derived chimeras in lactic acid bacteria(LAB)and the yeasts Pichia pastoris and Kluyveromyces lactis[J]. J Ind Microbiol Biotechnol, 2013, 40(9):977-993. [38] Zhou XX, Li WF, Ma GX, et al. The nisin-controlled gene expres-sion system:construction, application and improvements[J]. Biotechnol Adv, 2006, 24(3):285-295. [39] Sun C, Chen XZ, Huan LD, et al. Fusion expression of a peptide antibiotic-apidaecin gene in Lactococcus lactis[J]. Chin J Biotechnol, 2001, 17(1):20-23. [40] Horn N, Fernandez A, Dodd HM, et al. Nisin-controlled production of pediocin PA-1 and colicin V in nisin- and non-nisin-producing Lactococcus lactis strains[J]. Appl Environ Microbiol, 2004, 70(8):5030-5032. [41] Renye Jr JA, Somkuti GA, Garabal JI, et al. Heterologous production of pediocin for the control of Listeria monocytogenes in dairy foods[J]. Food Control, 2011, 22(12):1887-1892. [42] Axelsson L, Lindstad G, Naterstad K. Development of an inducible gene expression system for Lactobacillus sakei[J]. Lett Appl Microbiol, 2003, 37(2):115-120. [43] Hickey RM, Twomey DP, Ross RP, et al. Potential of the enterocin regulatory system to control expression of heterologous genes in Enterococcus[J]. J Appl Microbiol, 2003, 95(2):390-397. [44] Mathiesen G, S?rvig E, Blatny J, et al. High-level gene expression in Lactobacillus plantarum using a pheromone-regulated bacteriocin promoter[J]. Lett Appl Microbiol, 2004, 39(2):137-143. [45] S?rvig E, Gronqvist S, Naterstad K, et al. Construction of vectors for inducible gene expression in Lactobacillus sakei and L. plantarum[J]. FEMS Microbiol Lett, 2003, 229(1):119-126. [46] Driessen AJM, Nouwen N. Protein translocation across the bacterial cytoplasmic membrane[J]. Annu Rev Biochem, 2008, 77:643-667. [47] Natale P, Brüsser T, Driessen J. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane:distinct translocases and mechanisms[J]. Biophys Acta, 2008, 1778(9):1735-1756. [48] van Asseldonk M, de Vos WM, Simons G. Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous alpha amylase[J]. Mol Gen Genet, 1993, 240(3):428-434. [49] Le Loir Y, Nouaille S, Commissaire J, et al. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis[J].Appl Environ Microbiol, 2001, 67(9):4119-4127. [50] Nouaille S, Ribeiro LA, Miyoshi A, et al. Heterologous protein production and delivery systems for Lactococcus lactis[J]. Genet Mol Res, 2003, 2(1):102-111. [51] Borrero J, Jiménez JJ, Gútiez L, et al. Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria[J]. J Biotechnol, 2011, 156(1):76-86. [52] 周绪霞. Apidaecin 功能基团及其作用靶位点的分析及其在乳酸乳球菌中的分泌表达[D]. 杭州:浙江大学, 2008. [53] 李朴, 文阳安, 刘靳波, 等. 抗菌肽Bactenecin7重组质粒构建及其在乳酸菌的分泌表达和活性鉴定[J].中国生物工程杂志, 2009, 29(1):70-74. [54] O'Keeffe T, Hill C, Ross RP. Characterization and heterologous expression of the genes encoding enterocin A production, immunity, and regulation in Enterococcus faecium DPC1146[J]. Appl Environ Microb, 1999, 65:1506-1515. [55] Martínez, JM, Kok J, Sanders JW, et al. Heterologous co-production of enterocin A and pediocin PA-1 by Lactococcus lactis:detection by specific peptide-directed antibodies[J]. Appl Environ Microb, 2000, 66:3543-3549. [56] Kuipers OP, Beerthuyzen MM, de Ruyter PG, et al. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction[J]. J Biol Chem, 1995, 270:27299-27304. [57] Fink J, Merrifield RB, Boman A, et al. The chemical synthesis of cecropin D and an analog with enhanced antibacterial activity[J]. J Biol Chem, 1989, 264:6260-6267. [58] 李丽, 谯仕彦, 祝发明, 等. 蜜蜂抗菌肽Abaecin在枯草杆菌中的分泌表达[J]. 畜牧兽医学报, 2009, 40(11):1681-1685. [59] Brede DA, Faye T, Stierli MP, et al. Heterologous production of antimicrobial peptides in Propionibacterium freudenreichii[J].Appl Environ Microb, 2005, 71:8077-8084. |
[1] | REN Si-yu, JIANG Cong-yi, YU Tao, KANG Rui, JIANG Xiao-bing. Role of agr System in the Antimicrobial Resistance and Biofilm Formation of Listeria monocytogenes [J]. Biotechnology Bulletin, 2023, 39(2): 254-262. |
[2] | LIU Cheng-cheng, HU Xiao-fang, FENG You-jun. Antimicrobial Resistance:Biochemical Mechanisms and Countermeasures [J]. Biotechnology Bulletin, 2022, 38(9): 4-16. |
[3] | RUAN Zi-han, HUANG An-xiong, WANG Xiu-juan, HUANG Ling-li, HAO Hai-hong. Overview of CLSI,EUCAST,and Susceptibility Breakpoints in China [J]. Biotechnology Bulletin, 2022, 38(9): 47-58. |
[4] | ZHU Hao, ZHANG Yan-wei, LIU Run, LIANG Yan, YANG Yi, XU Tian-le, YANG Zhang-ping. Research Progress in Antibiotic Adjuvant and Antibiotics in Antibacterial Aspects [J]. Biotechnology Bulletin, 2022, 38(6): 66-73. |
[5] | YANG Rui-xian, LIU Ping, WANG Zu-hua, RUAN Bao-shuo, WANG Zhi-da. Analysis of Antimicrobial Active Metabolites from Antagonistic Strains Against Fusarium solani [J]. Biotechnology Bulletin, 2022, 38(2): 57-66. |
[6] | PAN Wen-juan, LIN Jia-fu, WANG Xiao-tao, GUO Yi-dong, CHU Yi-wen, LIU Chao-lan. Isolation,Identification and Antimicrobial Activity Determination of Actinobacteria from the Lakes in Tibet [J]. Biotechnology Bulletin, 2020, 36(7): 97-103. |
[7] | CAI Juan, LIU Liu, WANG Ling-jun, CAO Jian-ping, ZHENG Ming-hui, LIU Hui. Screening aoattacin Gene from Amiota okadai Based on Transcriptome Sequencing,Expression of It in Insect Cells and Antibacterial Activity Identification [J]. Biotechnology Bulletin, 2019, 35(9): 118-124. |
[8] | XU Chong-xin, ZHANG Cun-zheng, LIU Yuan, ZHAG Xiao, ZHONG Jian-feng, LIU Xian-jin. Research Advance for the Hazard Risks and Antimicrobial Bioactive Peptides of Food-borne Pathogenic Microorganisms [J]. Biotechnology Bulletin, 2019, 35(7): 202-212. |
[9] | DOU Peng-peng, WANG Li, ZHANG Hua, ZHENG Yao. Molecular Identification and Drug Resistance Analysis of Plesiomonas shigellode Isolated from Fish [J]. Biotechnology Bulletin, 2019, 35(11): 118-123. |
[10] | FU Chao-ying, WANG Jian-ping, SUN Chen, CHEN Lin, QIAN Dong. Isolation,Identification,Inhibition Spectrum and Safety Test of Antagonistic Bacteria to Major Pathogenic Bacteria in Larimichtys crocea [J]. Biotechnology Bulletin, 2019, 35(1): 67-75. |
[11] | QIN Nan, LIU Yu, WANG Li-yu. Response Surface Analysis for Optimizing Antimicrobial Protein from Mushroom Coprinus comatus Fermentation Liquid and Its Antioxidant Activity [J]. Biotechnology Bulletin, 2018, 34(4): 83-90. |
[12] | ZHI Wei, MA Hai-yan, QIU Yong-feng, HU Su-juan, WEI Ling-ling, ZHUAi-hua. Analysis of Antimicrobial Resistance and Resistance Genes of Salmonella from Swine [J]. Biotechnology Bulletin, 2018, 34(3): 170-176. |
[13] | PEI Jie,CHU Min,BAO Peng-jia,YAN Ping,GUO Xian. Research Progress on Antibacterial Mechanism of Lactoferrin [J]. Biotechnology Bulletin, 2017, 33(9): 56-63. |
[14] | WANG Peng-ju,TAN Huan-bo,SU Wen-cheng,ZHANG Wen-yu,ZOU Pei-jian. Study on Refolding and Purification of Plectasin MP1106 [J]. Biotechnology Bulletin, 2017, 33(9): 94-100. |
[15] | YANG Yan-hong,YU Ying HU,Yong-qiang,YU Xi,LI Qing-qing. Antimicrobial Activity and Anti-MRSA Mechanism of the Fermentation Broth of Bacillus amyloliquefaciens AF1 [J]. Biotechnology Bulletin, 2017, 33(9): 223-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||