[1]Christie JM. Phototropin blue-light receptors[J]. Annu Rev Plant Biol, 2007, 58(6):21-45.
[2]Christie JM, Salomon M, Nozue K, et al. LOV(light, oxygen, or voltage)domains of the blue-light photoreceptor phototropin(nph1):binding sites for the chromophore flavin mononucleotide[J]. Proc Natl Acad Sci USA, 1999, 96(15):8779-8783.
[3]Christie JM, Swartz TE, Bogomolni RA, et al. Phototropin LOV dom-ains exhibit distinct roles in regulating photoreceptor function[J]. Plant J, 2002, 32(2):205-219.
[4]Kaiserli E, Sullivan S, Jones MA, et al. Domain swapping to assess the mechanistic basis of Arabidopsis phototropin 1 receptor kinase activation and endocytosis by blue light[J]. Plant Cell, 2009, 21(10):3226-3244.
[5]Salomon M, Christie JM, Kneib E, et al. Photochemical and muta-tional analysis of the FMN-binding domains of the plant blue light receptor, phototropin[J]. Biochemistry, 2000, 39(31):9401-9410.
[6]Swartz TE, Corchnoy SB, Christie JM, et al. The photocycle of a flavin-binding domain of the blue-light photoreceptor phototropin[J]. J Biol Chem, 2001, 276(39):36493-36500.
[7]Kasahara M, Swartz TE, Olney MA, et al. Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii[J]. Plant Physiol, 2002, 129(2):762-773.
[8]Harper SM, Neil LC, Gardner KH. Structural basis of a phototropin light switch[J]. Science, 2003, 301(5639):1541-1544.
[9]Corchnoy SB, Swartz TE, Lewism JW, et al. Intramolecular proton transfers and structural changes during the photocycle of the LOV2 domain of phototropin 1[J]. J Biol Chem, 2003, 278(2):724-731.
[10]Sullivan S, Thomson CE, Lamont DJ, et al. In vivo phosphorylation site mapping and functional characterization of Arabidopsis phototopin 1[J]. Mol Plant, 2008, 1(1):178-194.
[11]Cho HY, Tseng TS, Kaiserli E, et al. Physiological roles of the light, oxygen, or voltage domains of phototropin 1 and phototropin 2 in Arabidopsis[J]. Plant Physiol, 2007, 143(1):517-529.
[12]Suetsugu N, Kong SG, Kasahara M, et al. Both LOVI and LOV2 domains of phototropin 2 function as the photosensory domain for hypocotyl phototropic responses in Arabidopsis thaliana(Brassicaceae)[J]. Am J Bot, 2013, 100(1):60-69.
[13]Takayama Y, Nakasako M, Okajima K, et al. Light-induced movement of the LOV2 domain in an Asp720Asn mutant LOV2-kinase fragment of Arabidopsis phototropin 2[J]. Biochem, 2011, 50(7):1174-1183.
[14]Aihara Y, Tabata R, Suzuki T, et al. Molecular basis of the functional specificities of phototropin 1 and 2[J]. Plant J, 2008, 56(3):364-375.
[15]B?gre L, Okrész L, Henriques R, et al. Growth signalling pathways in Arabidopsis and the AGC protein kinases[J]. Trends Plant Sci, 2003, 8(9):424-431.
[16]Inoue S, Kinoshita T, Matsumoto M, et al. Blue light-induced auto-phosphorylation of phototropin is a primary step for signaling[J]. Proc Natl Acad Sci USA, 2008a, 105(14):5626-5631.
[17]Sakamoto K, Briggs WR. Cellular and subcellular localization of phototropin 1[J]. Plant Cell, 2002, 14(8):1723-1735.
[18]Wan YL, Eisinger W, Ehrhardt D, et al. The subcellular localization and blue-light-induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana[J]. Mol Plant, 2008, 1(1):103-117.
[19]Kong SG, Suetsugu N, Kikuchi S, et al. Both phototropin 1 and 2 localize on the chloroplast outer membrane with distinct localization activity[J]. Plant Cell Physiol, 2013, 54(1):80-92.
[20]Kong SG, Suzuki T, Tamura K, et al. Blue light-induced association of phototropin 2 with the Golgi apparatus[J]. Plant J, 2006, 45(6):994-1005.
[21]Kong SG, Kinoshita T, Shimazaki KI, et al. The C-terminal kinase fragment of Arabidopsis phototropin 2 triggers constitutive phototropin responses[J]. Plant J, 2007, 51(5):862-873.
[22]Liscum E, Briggs WR. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli[J]. Plant Cell, 1995, 7(4):473-485.
[23]Kagawa T, Sakai T, Suetsugu N, et al. Arabidopsis NPL1:A phototropin homolog controlling the chloroplast high-light avoidance response[J]. Science, 2001, 291(5511):2138-2141.
[24]Folta KM, Kaufman LS. Phototropin 1 is required for high-fluence blue-light-mediated mRNA Destabilization[J]. Plant Mol Biol, 2003, 51(4):609-618.
[25]Folta KM, Spalding EP. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition[J]. Plant J, 2001, 26(5):471-478.
[26]Sakai T, Kagawa T, Kasahara M, et al. Arabidopsis nph1 and npl1:blue light receptors that mediate both phototropism and chloroplast relocation[J]. Proc Natl Acad Sci USA, 2001, 98(12):6969-6974.
[27]Tsuboi H, Suetsugu N, Kawai TH, et al. Phototropins and neochrome1 mediate nuclear movement in the fern Adiantum capillus-veneris[J]. Plant Cell Physiol, 2007, 48(6):892-896.
[28]Titapiwatanakun B, Blakeslee JJ, Bandyopadhyay A, et al. ABCB19/PGP19 stabilizes PIN1 in membrane microdomains in Arabidopsis[J]. Plant J, 2009, 57(1):27-44.
[29]Christie JM, Yang H, Richter GL, et al. Phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism[J]. PLoS Biology, 2011, 9(6):e1001076.
[30]Takemiya A, Sugiyama N, Fujimoto H, et al. Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening[J].Nature, 2013, 4:2094.
[31]Kinoshita T, Doi M, Suetsugu N, et al. Phot1 and phot2 mediate blue light regulation of stomatal opening[J]. Nature, 2001, 414(6864):656-660.
[32]Shimazaki K, Doi M, Assmann SM, et al. Light regulation of stomatal movement[J]. Annu Rev Plant Biol, 2007, 58:219-247.
[33]Demarsy E, Schepens I, Okajima K, et al. Phytochrome kinase substrate 4 is phosphorylated by the phototropin 1 photoreceptor[J]. EMBO J, 2012, 31(16):3457-3467.
[34]Motchoulski A, Liscum E. Arabidopsis NPH3:A NPH1 Photoreceptor-interacting protein essential for phototropism[J]. Science, 1999, 286(5441):961-964.
[35]Inada S, Ohgishi M, Mayama T, et al. RPT2 is a signal transducer involved in phototropic response and stomatal opening by associa-tion with phototropin 1 in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(4):887-896.
[36]Carbonnel MD, Davis P, Roelfsema MRG, et al. The Arabidopsis PHYTOCHROME INASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning [J]. Plant Physiol, 2010, 152(3):1391-1405.
[37]Pedmale UV, Liscum E. Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3[J]. J Biol Chem, 2007, 282(27):19992-20001.
[38]Harada A, Takemiya A, Inoue S, et al. Role of RPT2 in leaf posi-tioning and flattening and a possible inhibition of phot2 signaling by phot1[J]. Plant Cell Physiol, 2013, 54(1):36-47.
[39]Lariguet P, Boccalandro HE, Alonso JM, et al. A growth regulatory loop that provides homeostasis to phytochrome A signaling[J]. Plant Cell, 2003, 15(12):2966-2978.
[40]Lariguet P, Schepens I, Hodgson D, et al. PHYTOCHROME KI-NASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism[J]. Proc Natl Acad Sci USA, 2006, 103(26):10134-10139.
[41]Jaedicke K, Lichtenth?ler AL, Meyberg R, et al. A phytochrome-phototropin light signaling complex at the plasma membrane[J]. Proc Natl Acad Sci USA, 2012, 109(30):12231-12236.
[42]Tseng TS, Briggs WR. The Arabidopsis rcn1-1 mutation impairs dephosphorylation of phot2, resulting in enhanced blue light responses[J]. Plant Cell, 2010, 22(2):392-402.
[43]Knauer T, Dümmer M, Landgraf F, et al. A negative effector of blue light-induced and gravitropic bending in Arabidopsis thaliana[J]. Plant Physiol, 2011, 156(1):439-447.
[44]Sullivan S, Thomson CE, Kaiserli E, et al. Interaction specificity of Arabidopsis 14-3-3 proteins with phototropin receptor kinases[J]. FEBS Lett, 2009, 583(13):2187-2193.
[45]Chen X, Lin WH, Wang Y, et al. An inositol polyphosphate 5-Phosphatase functions in PHOTOTROPIN1 signaling in Arabidopis by altering cytosolic Ca2+[J]. Plant Cell, 2008, 20(2):353-366.
[46]Kozuka T, Suetsugu N, Wada M, et al. Antagonistic regulation of leaf flattening by phytochrome B and phototropin in Arabidopsis thaliana[J]. Plant Cell Physiol, 2013, 54(1):69-79.
[47]Oikawa K, Kasahara M, Kiyosue T, et al. CHLOROPLAST UNUSUAL POSITIONING1 is essential for proper chloroplast positioning[J]. Plant Cell, 2003, 15(12):2805-2815.
[48]Oikawa K, Yamasato A, Kong SG, et al. Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement[J]. Plant Physiol, 2008, 148(2):829-842.
[49]Schmidt von Braun S, Schleiff E. The chloroplast outer membrane protein CHUP1 interacts with actin and profilin[J]. Planta, 2008, 227(5):1151-1159.
[50]Suetsugu N, Yamada N, Kagawa T, et al. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2010, 107(19):8860-8865.
[51]Whippo CW, Khurana P, Davis PA, et al. THRUMIN1 is a light-regulated actin-bundling protein involved in chloroplast motility[J]. Curr Biol, 2011, 21(1):59-64.
[52]Wen F, Wang J, Xing D. A Protein Phosphatase 2A catalytic subunit modulates blue light-induced chloroplast avoidance movements through regulating actin cytoskeleton in Arabidopsis[J]. Plant Cell Physiol, 2012, 53(8):1366-1379.
[53]Takemiya A, Yamauchi S, Yano T, et al. Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening[J]. Plant Cell Physiol, 2013, 54(1):24-35.
[54]Kodama Y, Suetsugu N, Kong SG, et al. Two interacting coiled-coil proteins, WEB1 and PMI2, maintain the chloroplast photorelocation movement velocity in Arabidopsis[J]. Proc Natl Acad Sci USA, 2010, 107(45):19591-19596.
[55]?abuz J, Sztatelman O, Bana? AK, et al. The expression of photot ropins in Arabidopsis leaves:developmental and light regulation[J]. J Exp Bot, 2012, 63(4):1763-1771.
[56]Whippo CW, Hangarter RP. Phototropism:bending towards enlightenment[J]. Plant Cell, 2006, 18(5):1110-1119.
[57]Kami C, Allenbach L, Zourelidou M, et al. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport[J]. Plant J, 2014, 77(3):393-403.
[58]Blakeslee JJ, Bandyopadhyay A, Peer WA, et al. Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses[J]. Plant Physiol, 2004, 134(1):28-31.
[59]Willige BC, Ahlers S, Zourelidou M, et al. D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis[J]. Plant Cell, 2013, 25(5):1674-1688.
[60]Haga K, Sakai T. PIN auxin efflux carriers are necessary for pulse-induced but not continuous light-induced phototropism in Arabidopsis[J]. Plant Physiol, 2012, 160(2):763-776.
[61]Harper RM, Stowe EL, Luesse DR, et al. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue[J]. Plant Cell, 2000, 12(5):757-770.
[62]Stone BB, Stowe EL, Harper RM, et al. Disruptions in AUX1-depe- ndent auxin influx alter hypocotyl phototropism in Arabidopsis[J]. Mol Plant, 2008, 1(1):129-144.
[63]Sun J, Qi L, Li Y, et al. PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis[J]. Plant Cell, 2013, 25(6):2102-2114.
[64]Harada A, Sakai T, Okada K. Phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves[J]. Proc Natl Acad Sci USA, 2003, 100(14):8583-8588.
[65]Harada A, Shimazaki KI. Phototropins and blue light-dependent calcium signaling in higher plants[J]. Photochem Photobiol, 2007, 83(1):102-111.
[66]Aggarwal C, ?abuz J, Gabry? H. Phosphoinositides play differential roles in regulating phototropin1-and phototropin2-mediated chloroplast movements in Arabidopsis[J]. PloS One, 2013, 8(2):e55393.
[67]DeBlasio SL, Luesse DL, Hangarter RP. A plant specific protein essential for blue-light-induced chloroplast movements[J]. Plant Physiol, 2005, 139(1):101-114.
[68]Shimazaki K, Goh CH, Kinoshita T. Involvement of intracellular Ca2+ in blue light-dependent proton pumping in guard cell protoplasts from Vicia faba[J]. Physiol Plant, 1999, 105(3):554-561.
[69]Zhao X, Wang YL, Qiao XR, et al. Phototropins function in high-intensity-blue-light-induced hypocotyls phototropism in Arabidopsis by altering cytosolic calcium[J]. Plant Physiol, 2013, 162(3):1539-1551. |