[1]Walsh G. Biopharmaceutical benchmarks 2010[J]. Nature Biotechnology, 2010, 28(9):917. [2]于晓鸿. 中国生物制药产业发展研究[J]. 黑龙江科技信息, 2013(4):46. [3]前瞻产业研究. 2013-2017年 中国生物制药行业产销需求与投资预测分析报告[R]. 前瞻产业研究院, 2013. [4] 韩迎. 生物技术药物的优势与前景展望[J]. 中国医院药学杂志, 2013, 33(13):1083-1085. [5] 范翠英, 冯利兴, 樊金玲, 等. 重组蛋白表达系统的研究进展[J]. 生物技术, 2012, 22(2):76-80. [6] Chen M, Liu X, Wang Z, et al. Modification of plant N-glycans processing:The future of producing therapeutic protein by transgenic plants[J]. Med Res Rev, 2005, 25(3):343-360. [7] Sharma AK, Sharma MK. Plants as bioreactors:Recent developments and emerging opportunities[J]. Biotechnology Advances, 2009, 27(6):811-832. [8] Ma JKC, Hikmat BY, Wycoff K, et al. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans[J]. Nature Medicine, 1998, 4(5):601-606. [9] http://www. pharmexec. com/pharmexec/The-First-Plant-Derived-Vaccine-Approved-for-Chick/ArticleStandard/Article/detail/307471. [10] http://www. popsci. com/science/article/2012-05/first-plant-derived-biologic-drug-approved-human-use-fda. [11] He Y, Ning T, Xie T, et al. Large-scale production of functional human serum albumin from transgenic rice seeds[J]. Proc Natl Acad Sci USA, 2011, 108(47):19078-19083. [12]Obembe OO, Popoola JO, Leelavathi S, et al. Advances in plant molecular farming[J]. Biotechnol Adv, 2011, 29(2):210-222. [13] Pniewski T, Kapusta J, Boci?g P, et al. Low-dose oral immunization with lyophilized tissue of herbicide-resistant lettuce expressing hepatitis B surface antigen for prototype plant-derived vaccine tablet formulation[J]. J Appl Genet, 2011, 52(2):125-136. [14] Bosch D, Schots A. Plant glycans:friend or foe in vaccine development?[J]. Expert Rev Vaccines, 2010, 9(8):835-842. [15] Kay R, Chan A, Daly M, et al. Duplication of a CaMV 35S promoter sequences creates a strong enhancer for plant genes[J]. Sciences, 1987, 236:1299-1302. [16]De Jaeger G, Scheffer S, Jacobs A, et al. Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences[J]. Nature Biotechnology, 2002, 20(12):1265-1268. [17]Hennegan K, Yang D, Nguyen D, et al. Improvement of human lysozyme expression in transgenic rice grain by combining wheat(Triticum aestivum)puroindoline b and rice(Oryza sativa)Gt1 promoters and signal peptides[J]. Transgenic Research, 2005, 14(5):583-592. [18]Cardi T, Lenzi P, Maliga P. Chloroplasts as expression platforms for plant-produced vaccines[J]. Expert Rev Vaccines, 2010, 9(8):893-911. [19]Tregoning JS, Nixon P, Kuroda H, et al. Expression of tetanus toxin fragment C in tobacco chloroplasts[J]. Nucleic Acids Research, 2003, 31(4):1174-1179. [20]Davoodi-Semiromi A, Schreiber M, Nalapalli S, et al. Chloroplast‐derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery[J]. Plant Biotechnology Journal, 2010, 8(2):223-242. [21] Turpen TH. Tobacco mosaic virus and the virescence of biotechnology[J]. Philos Trans R Soc Lond B Biol Sci, 1999, 354(1383):665-673. [22]Kumagai MH, Donson J, della-Cioppa G, et al. Rapid, high-level expression of glycosylated rice α-amylase in transfected plants by an RNA viral vector[J]. Gene, 2000, 245(1):169-174. [23]O’Keefe BR, Vojdani F, Buffa V, et al. Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component[J]. Proc Natl Acad Sci USA, 2009, 106(15):6099-6104. [24] Bendandi M, Marillonnet S, Kandzia R, et al. Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin&s lymphoma[J]. Annals of Oncology, 2010, 21(12):2420-2427. [25]Nagels B, Weterings K, Callewaert N, et al. Production of plant made pharmaceuticals:from plant host to functional protein[J]. Critical Reviews in Plant Sciences, 2012, 31(2):148-180. [26]Gomord V, Fitchette AC, Menu-Bouaouiche L, et al. Plant-specific glycosylation patterns in the context of therapeutic protein production[J]. Plant Biotechnol J, 2010, 8(5):564-587. [27] van Ree R, Cabanes-Macheteau M, Akkerdaas J, et al. β(1, 2)-xylose and α(1, 3)-fucose residues have a strong contribution in IgE binding to plant glycoallergens[J]. J Biol Chem, 2000, 275(15):11451-11458. [28] Jin C, Altmann F, Strasser R, et al. A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits[J]. Glycobiology, 2008, 18(3):235-241. [29] Cox KM, Sterling JD, Regan JT, et al. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor[J]. Nature Biotechnology, 2006, 24(12):1591-1597. [30] Sourrouille C, Marquet-Blouin E, D&Aoust MA, et al. Down‐regulated expression of plant-specific glycoepitopes in alfalfa[J]. Plant Biotechnology Journal, 2008, 6(7):702-721. [31]Strasser R, Stadlmann J, Sch?hs M, et al. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure[J]. Plant Biotechnol J, 2008, 6(4):392-402. [32]Castilho A, Strasser R, Stadlmann J, et al. In planta protein sialylation through overexpression of the respective mammalian pathway[J]. J Biol Chem, 2010, 285(21):15923-15930. [33]Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifi-cally targets mammalian LDLRAP1:evidence of cross-kingdom regulation by microRNA[J]. Cell Research, 2011, 22(1):107-126. |