Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (4): 47-55.doi: 10.13560/j.cnki.biotech.bull.1985.2015.03.013
• Review • Previous Articles Next Articles
Jiang Chaoqiang Zu Chaolong
Received:
2014-12-01
Online:
2015-04-22
Published:
2015-04-22
Jiang Chaoqiang, Zu Chaolong. Advances in Melatonin and Its Roles in Abiotic Stress Resistance in Plants[J]. Biotechnology Bulletin, 2015, 31(4): 47-55.
[1]Kolá? J, Machá?ková I. Melatonin in higher plants:occurrence and possible functions[J]. Journal of Pineal Research, 2005, 39:333-341. [2]Tan DX, Manchester LC, DiMascio P, et al. Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth:importance for phytoremediation[J]. The FASEB Journal, 2007, 21(8):1724-1729. [3]Tan DX, Hardeland R, Manchester LC, et al. The changing biological roles of melatonin during evolution:from an antioxidant to signals of darkness, sexual selection and fitness[J]. Biological Reviews, 2010, 85(3):607-623. [4]Dubbels R, Reiter RJ, Klenke E. , et al. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry[J]. Journal of Pineal Research, 1995, 18(1):28-31. [5]Tan DX, Hardeland R, et al. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science[J]. Journal of Experimental Botany, 2012, 63(2):577-597. [6]Janas KM, Posmyk MM. Melatonin, an underestimated natural substance with great potential for agricultural application[J]. Acta Physiologiae Plantarum, 2013, 35(12):3285-3292. [7]Lerner AB, Case J, Takahashi Y, et al. Isolation of melatonin, the pineal gland factor that lightens melanocytes[J]. Journal of the American Chemical Society, 1958, 80(10):2587-2587. [8]Okazaki M, Ezura H. Profiling of melatonin in the model tomato(Solanum lycopersicum L. )[J]. Journal of Pineal Research, 2009, 46:338-343. [9]Sae-Teaw M, Johns J, Johns NP, et al. Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange, or banana by healthy male volunteers[J]. Journal of Pineal Research, 2013, 55:58-64. [10]Reiter RJ. Pineal melatonin:cell biology of its synthesis and of its physiological interactions[J]. Endocrine Reviews, 1991, 12(2):151-180. [11]Murch SJ, KrishnaRaj S, Saxena P. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort(Hypericum perforatum L. cv. Anthos)plants[J]. Plant Cell Reports, 2000, 19(7), 698-704. [12]Murch SJ, Campbell SSB, Saxena PK. The role of serotonin and melatonin in plant morphogenesis:regulation of auxin-induced root organogenesis in in vitro-cultured explants of St. John’s wort(Hypericum perforatum L. )[J]. In Vitro Cellular and Developmental Biology-Plant, 2001, 37(6):786-793. [13]Kang K, Kong K, Park S, et al. Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice[J]. Journal of Pineal Research, 2011, 50(3):304-309. [14]Tan DX, Manchester LC, Liu XY, et al. Mitochondria and chloroplasts as the original sites of melatonin synthesis:a hypothesis related to melatonin’s primary function and evolution in eukaryotes[J]. Journal of Pineal Research, 2013, 54, 127-138. [15]Arnao MB, Hernández-Ruiz J. The physiological function of melatonin in plants[J]. Plant Signaling and Behavior, 2006, 1(3):89-95. [16]Zhu JK. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53:247-273. [17]Wang P, Sun X, Li C, et al. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple[J]. Journal of Pineal Research, 2013, 54:292-302. [18]Zhang N, Zhao B, Zhang HJ, et al. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber(Cucumis sativus L. )[J]. Journal of Pineal Research, 2013, 54:15-23. [19]Wei W, Li QT, Chu YN, et al. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants[J]. Journal of Experimental Botany, 2014. doi:10. 1093/jxb/eru392 [20]Shi H, Jiang C, Ye T, et al. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass[Cynodon dactylon(L). Pers.] by exogenous melatonin[J]. Journal of Experimental Botany, 2014. doi:10. 1093/jxb/eru373 [21]Xiong L, Zhu JK. Molecular and genetic aspects of plant responses to osmotic stress[J]. Plant Cell and Environment, 2002, 25:131-139. [22]Kar RK. Plant responses to water stress:role of reactive oxygen species[J]. Plant Signaling & Behavior, 2011, 6:1741-1745. [23] Roldán A, DíazVivancos P, Hernández JA, et al. Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil[J]. Journal of Plant Physiology, 2008, 165:715-722. [24] Reiter RJ, Tan DX, Terron MP, et al. Melatonin and its metabolites:new findings regarding their production and their radical scavenging actions[J]. Acta Biochim Pol, 2007, 54:1-9. [25] Reiter RJ. Oxidative damage in the central nervous system:protection by melatonin[J]. Progress in Neurobiology, 1998, 56:359-384. [26] Tan DX, Manchester LC, Reiter RJ, et al. Melatonin directly scavenges hydrogen peroxide:a potentially new metabolic pathway of melatonin biotransformation[J]. Free Radical Biology and Medicine, 2000, 29:1177-1185. [27] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review Plant Biology, 2008, 59:651-681. [28] Flowers TJ. Improving crop salt tolerance[J]. Journal of Experimental Botany, 2004, 55(396):307-319. [29] Li C, Wang P, Wei Z, et al. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis[J]. Journal of Pineal Research, 2012, 53(3):298-306. [30] Lin YH, Pan KY, Hung CH, et al. Overexpression of ferredoxin, PETF, enhances tolerance to heat stress in Chlamydomonas reinhardtii[J]. International Journal of Molecular Sciences, 2013, 14:20913-20929. [31] Zhang HJ, Zhang N, Yang RC, et al. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber(Cucumis sativus L. )[J]. Journal of Pineal Research, 2014. doi:10. 1111/jpi. 12167 [32] Jiang X, Leidi EO, Pardo JM. How do vacuolar NHX exchangers function in plant salt tolerance?[J]. Plant Signaling & Behavior, 2010, 5(7):792-795. [33]Apse MP, Aharon GS, Snedden WA, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis[J]. Science, 1999, 285:1256-1258. [34]Zhang HX, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J]. Nature Biotechnology, 2001, 19:765-768. [35]Jiang CQ, Zheng QS, Liu ZP, et al. Seawater-irrigation effects on growth, ion concentration, and photosynthesis of transgenic poplar overexpressing the Na+/H+ antiporter AtNHX1[J]. Journal of Plant Nutrition and Soil Science, 2011, 174(2):301-310. [36]Jiang CQ, Zheng QS, Liu ZP, et al. Overexpression of Arabidopsis thaliana Na+/H+ antiporter gene enhanced salt resistance in transgenic poplar(Populus×euramericana ‘Neva’)[J]. Trees, 2012, 26:685-694. [37]Bajwa VS, Shukla MR, Sherif SM, et al. Role of melatonin in alleviating cold stress in Arabidopsis thaliana[J]. Journal of Pineal Research, 2014, 56(3):238-245 [38]Ruelland E, Zachowski A. How plants sense temperature[J]. Environmental and Experimental Botany, 2010, 69:225-32. [39]Chen TH, Murata N. Glycinbetaine:an effective protectant against abiotic stress in plants[J]. Trends in Plant Science, 2008, 13:499-505. [40]Xu XX, Shao HB, Chu LY, et al. Biotechnological implications from abscisic acid(ABA)roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions[J]. Critical Reviews in Biotechnology, 2010, 30(3):222-230. [41]Shi HT, Ye TT, Zhong B, et al. Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass(Cynodon dactylon(L. )Pers. )by exogenous calcium[J]. Journal of Integrative Plant Biology, 2014, 56(11):1064-1079. [42]Tan DX, Manchester LC, Reiter RJ, et al. Significance of melatonin in antioxidative defense system:Reactions and products[J]. Biological Signals and Receptors, 2000, 9(3-4):137-159. [43]Lei XY, Zhu RY, Dai YR, et al. Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells:The possible involvement of polyamines[J]. Journal of Pineal Research, 2004, 36(2):126-131. [44]张贵友, 李萍, 戴尧仁. 低温胁迫下褪黑激素对烟 草悬浮细胞精氨酸脱羧酶活性的影响[J]. 植物学通报, 2005, 22(5):555-559. [45]Watson MB, Malmberg RL. Regulation of Arabidopsis thaliana(L. )heynh arginine decarboxylase by potassium deficiency stress[J]. Plant Physiology, 1996, 111(4):1077-1083 [46]Posmyk MM, Balabusta M, Wieczorek M, et al. Melatonin applied to cucumber(Cucumis sativus L. )seeds improves germination during chilling stress[J]. Journal of Pineal Research, 2009, 46(2):214-223. [47]Zhao Y, Qi L, Wang W, et al. Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata[J]. Journal of Pineal Research, 2011, 50:83-88. [48]Steponkus PL, Uemura M, Joseph RA, et al. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 1998, 95:14570-14575. [49]Lobell DB, Asner GP. Climate and management contributions to recent trends in U. S. agricultural yields[J]. Science, 2003, 299:1032. [50]Lobell DB, Sibley A, Ortiz-Monasterio JI. Extreme heat effects on wheat senescence in India[J]. Nature Climate Change, 2012, 2(3):186-189. [51]Larkindale J, Huang BR. Thermotolerance and antioxidant systems in Agrostis stolonifera:involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene[J]. Journal of Plant Physiology, 2004, 161(4):405-413. [52]Larkindale J, Huang BR. Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for Creeping Bentgrass[J]. Plant Growth Regulation, 2005, 47(1):17-28. [53]Tal O, Haim A, Harel O, et al. Melatonin as an antioxidant and its semi-lunar rhythm in green macroalga Ulva sp.[J]. Journal of Experimental Botany, 2011, 62:1903-1910. [54]Tiryaki I, Keles H. Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin[J]. Journal of Pineal Research, 2012, 52(3):332-339. [55]Byeon Y, Back KW. Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities[J]. Journal of Pineal Research, 2013, 56:189-195. [56]徐向东, 孙艳, 郭晓芹, 等. 褪黑素对高温胁迫下黄瓜幼苗抗坏血酸代谢系统的影响[J]. 应用生态学报, 2010, 21(10):2580-2586 [57]徐向东, 孙艳, 孙波, 等. 高温胁迫下外源褪黑素对黄瓜幼苗活性氧代谢的影响[J]. 应用生态学报, 2010, 21(5):1295-1300. [58]Demmig AD, Ams B, Adams WW. Photoprotection and other responses of plants to high light stress[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43:599-626. [59]Pieri C, Marra M, Moroni F, et al. Melatonin:A peroxyl radical scavenger more effective than vitamin E[J]. Life Sciences, 1994, 55:271-276. [60]Posmyk MM, Kuran H, Marciniak K, et al. Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations[J]. Journal of Pineal Research, 2008, 45(1):24-31. [61]Hall J. Cellular mechanisms for heavy metal detoxification and tolerance[J]. Journal of Experimental Botany, 2002, 53:1-11. [62]Schützendübel A, Polle Andrea. Plant responses to abiotic stresses:heavy metalinduced oxidative stress and protection by mycorrhization[J]. Journal of Experimental Botany, 2002, 53:1351-1365. [63]Yadav SK. Heavy metals toxicity in plants:An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants[J]. South African Journal of Botany, 2010, 76:167-179. [64]Moffat AS. Plants proving their worth in toxic metal cleanup[J]. Science, 1995, 269:302-303. [65]Limson J, Nyokong T, Daya S. The interaction of melatonin and its precursors with aluminium, cadmium, copper, iron, lead, and zinc:an adsorptive voltammetric study[J]. Journal of Pineal Research, 1998, 24, 15-21. [66]Tan DX, Manchester LC, Reiter RJ, et al. Phytoremediative capacity of plants enriched with melatonin[J]. Plant Signaling and Behavior, 2007, (6):514-516. [67]Agunbiade FO, Olu-Owolabi BI, Adebowale KO. Phytoremediation potential of Eichornia crassipes in metal-contaminated coastal water[J]. Bioresource Technology, 2009, 100(19):4521-4526. [68]王英利, 王英娟, 郝建国, 等. 褪黑素对绿豆在增强UV-B辐射下的防护作用[J]. 光子学报, 2009, 38:2629-2633. [69]Hardeland R. New actions of melatonin and their relevance to biometeorology[J]. International Journal of Biometeorology, 1997, 41(2):47-57. [70]Lazár D, Murch SJ, Beilby MJ, et al. Exogenous melatonin affects photosynthesis in characeae Chara australi[J]. Plant Signaling & Behavior, 2013, 8(3):e23279 doi:10. 4161/psb. 23279 [71]Afreen F, Zobayed SMA, Kozai T. Melatonin in Glycyrrhiza uralensis:response of plant roots to spectral quality of light and UV-B radiation[J]. Journal of Pineal Research, 2006, 41(2):108-115. [72]Zhang LJ, Jia JF, Xu Y, et al. Production of transgenic Nicotiana sylvestris plants expressing melatonin synthetase genes and their effect on UV-B-induced DNA damage[J]. In Vitro Cellular & Developmental Biology-Plant, 2012, 48:275-282. [73]Hattori A, Migitaka H, Iigo M, et al. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates[J]. Biochemistry and Molecular Biology International, 1995, 35(3):627-634. [74]Manchester LC, Tan DX, Reiter RJ. High levels of melatonin in the seeds of edible plants:possible function in germ tissue protection[J]. Life Sciences, 2000, (67):3023-3029. [75]Riga P, Medina S, Garcia-Flores LA, et al. Melatonin content of pepper and tomato fruits:effects of cultivar and solar radiation[J]. Food Chemistry, 2014, 156:347-352. [76]Murch SJ, Alan AR, Cao J, et al. Melatonin and serotonin in flowers and fruits of Datura metel L[J]. Journal of Pineal Research, 2009, 47:277-283. [77]Arnao MB, Hernández-Ruiz J. Chemical stress by different agents affects the melatonin content of barley roots[J]. Journal of Pineal Research, 2009, 46(3):295-299. |
[1] | KANG Ling-yun, HAN Lu-lu, HAN De-ping, CHEN Jian-sheng, GAN Han-ling, XING Kai, MA You-ji, CUI Kai. Effect of Melatonin on Protecting the Jejunum Mucosal Epithelial Cells from Oxidative Stress Damage [J]. Biotechnology Bulletin, 2023, 39(9): 291-299. |
[2] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[3] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[4] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[5] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[6] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[7] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[8] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[9] | WANG Chun-yu, LI Zheng-jun, WANG Ping, ZHANG Li-xia. Physiological and Biochemical Analysis of Drought Resistance in Sorghum Cuticular Wax-deficient Mutant sb1 [J]. Biotechnology Bulletin, 2023, 39(5): 160-167. |
[10] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[11] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[12] | WANG Qi, HU Zhe, FU Wei, LI Guang-zhe, HAO Lin. Regulation of Burkholderia sp. GD17 on the Drought Tolerance of Cucumber Seedlings [J]. Biotechnology Bulletin, 2023, 39(3): 163-175. |
[13] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[14] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[15] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||