[1]Baiguz A, Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses[J]. Plant Physiology and Biochemistry, 2009, 47(1):1-8. [2]Ozdemir F, Bor M, Demiral T, et al. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice(Oryza sativa L.)under salinity stress[J]. Plant Growth Regulation, 2004, 42(3):203-211. [3]Anuradha S, Rao S. Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice(Oryza sativa L. )[J]. Plant Growth Regulation, 2001, 33(2):151-153. [4]Sharma I, Ching E, Saini R, et al. Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1[J]. Plant Physiology and Biochemistry, 2013, 69:17-26. [5]束红梅, 倪万潮, 郭书巧. 油菜素内酯代谢相关基因及其调控植物耐盐性的研究进展[J]. 分子植物育种, 2011, 9:34. [6]Symons GM, Reid JB. Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels[J]. Plant Physiology, 2004, 135(4):2196-2206. [7]Neff MM, Nguyen SM, Malancharuvil EJ, et al. BAS1:A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis[J]. PNAS, 1999, 96(26):15316-15323. [8]Choe S. Brassinosteroid biosynthesis and metabolism[D]. Plant Hormones, 2010:156-178. [9]Turk EM, Fujioka S, Seto H, et al. BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinost-eroid inactivation mechanisms[J]. Plant Journal, 2005, 42(1):23-34. [10] Ohnishi T, Yokota T, Mizutani M. Insights into the function and ev-olution of P450s in plant steroid metabolism[J]. Phytochemistry, 2009, 70(17-18):1918-1929. [11]刘莹, 盖钧镒, 吕彗能. 作物根系形态与非生物胁迫耐性关系的研究进展[J]. 植物遗传资源学报, 2003, 4(3):265-269. [12]郭敏, 王楠, 付畅. 植物根系耐盐机制的研究进展[J]. 生物技术通报, 2012(6):7-12. [13]南兰, 林慧馨, 关育成, 等. 根特异表达顺式激活序列在转基因烟草中的功能分析[J]. 科学通报, 2002, 47(1):49-53. [14]彭娟, 李志邈, 杨悦俭, 等. 烟草根特异性启动子植物表达载体的构建及其对番茄的转化[J]. 浙江农业学报, 2009, 21(1):1-5. [15]Zeng H, Qi T, Hua X. Arabidopsis brassinosteroid mutants det2-1 and bin2-1 display altered salt tolerance[J]. Journal of Plant Growth Regulation, 2010, 29(1):44-52. [16]束红梅, 郭书巧, 倪万潮. 转油菜素内酯合成基因DET2烟草对NaCl胁迫的反应[J]. 生物技术通报, 2011(12):113-116. [17]Divi UK, Krishna P. Brassinosteroid:a biotechnological target for enhancing crop yield and stress tolerance[J]. New Biotechnology, 2009, 26(3-4):131-136. [18]Poppenberger B, Fujioka S, Soeno K, et al. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids[J]. Proc Natl Acad Sci USA, 2005, 102(42):15253-15258. [19]Maharjan PM, Schulz B, Choe S. BIN2/DWF12 antagonistically transduces brassinosteroid and auxin signals in the roots of Arabidopsis[J]. Journal of Plant Biology, 2011, 54(2):126-134. [20]李志邈, 杨悦俭, 杨飞, 等. 番茄根特异表达基因LeGRP2启动子的克隆及其在拟南芥的表达分析[J]. 中国农业科学, 2010, 43(9):1877-1882. [21]王丹, 王丕武, 付永平, 等. 大豆根部特异性启动子的克隆及功能分析[J]. 大豆科学, 2009, 28(2):195-199. |