Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (10): 58-65.doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.012
• Orginal Article • Previous Articles Next Articles
WANG Pei-pei, SONG Ping, ZHANG Qun
Received:
2016-08-26
Online:
2016-10-25
Published:
2016-10-12
WANG Pei-pei, SONG Ping, ZHANG Qun. Plant Phospholipase D Signaling Pathway in Response to Salt Stress[J]. Biotechnology Bulletin, 2016, 32(10): 58-65.
[1] 钟秀丽, 崔德才, 李玉中. 磷脂酶D的细胞信号转导作用[J]. 植物生理与分子生物学学报, 2005, 31(5):451-460. [2] Wang XM. Phospholipase D in hormonal ands tress signaling[J]. Current Opinion in Plant Biology, 2002, 5:408-414. [3] Hong YY, Zhao J, Guo L, et al. Plant phospholipases D and C and their diverse functions in stress responses[J]. Progress in Lipid Research, 2016, 62:55-74. [4] Hanahan DJ, Chaikoff IL. A new phospholipide-splitting enzyme specific for the ester linkage between the nitrogenous base and the phosphoric acid grouping[J]. The Journal Biological Chemistry, 1947, 169:699-705. [5] 闫旭宇, 李玉中, 李玲, 等. 植物中的磷脂酶D信号转导[J]. 植物生理学通讯, 2006, 42(6):1183-1189. [6] Wang X. Lipid signaling[J]. Current Opinion in Plant Biollgy, 2004, 7:1-8. [7] Wang X, Devaiah SP, Zhang W, et al. Signaling functions of phosphatidic acid[J]. Progress in Lipid Research, 2006, 45:250-278. [8] Qin C, Wang XM. The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLD ζ 1 with distinct regulatory domains[J]. Plant Physiology, 2002, 128:1057-1068. [9] Koonin EV. A duplicated catalytic motif in a new superfamily of pho-sphohydrolases and phospholipid synthases that includes poxvirus envelope proteins[J]. Trends in Biochemical Sciences, 1996, 21:242-243. [10] Zheng L, Shan J, Krishnamoorthi R, et al. Activation of plant phospholipase Dβ by phosphatidylinositol 4, 5-bisphosphate:characterization of binding site and mode of action[J]. Biochemistry, 2002, 41:4546-4553. [11] Zhao J, Wang X. Arabidopsis phospholipase Dα1 interacts with the heterotrimeric G-protein α-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors[J]. The Journal Biological Chemistry, 2004, 279:1794-1800. [12] Wang C, Wang XM. A novel phospholipase D of Arabidopsis that is activated by oleic acid and associated with the plasma membrane[J]. Plant Physiology, 2001, 127:1102-1112. [13] Hong Y, Devaiah SP, Bahn SC, et al. Phospholipase Dε and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth[J]. The Plant Journal, 2009, 58:376-387. [14] Zhao J, Devaiah SP, Wang C, et al. Arabidopsis phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens[J]. New Phytologist, 2013, 199:228-240. [15] Pinosa F, Buhot N, Kwaaitaal M, et al. Arabidopsis phospholipase Dδ is involved in basal defense and nonhost resistance to powdery mildew fungi[J]. Plant Physiology, 2013, 163:896-906. [16] Hong Y, Pan X, Welti R, et al. Phospholipase Dα3 is involved in the hyperosmotic response in Arabidopsis[J]. The Plant Cell, 2008, 20:803-816. [17] Cruz-Ramírez A, Oropeza-Aburto A, Razo-Hernández F, et al. Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103:6765-6770. [18] Li G, Xue HW. Arabidopsis PLD ζ 2 regulates vesicle trafficking and is required for auxin response[J]. The Plant Cell, 2007, 19:281-295. [19] Zhao J, Wang C, Bedair M, et al. Suppression of phospholipase Dγs confers increased aluminum resistance in Arabidopsis thaliana[J]. PLoS One, 2011, 6:e28086. [20] Ljung K, Ostin A, Lioussanne L, et al. Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings[J]. Plant Physiology, 2001, 125:464-475. [21] Normanly J, Cohen JD, Fink GR. Arabidopsis thaliana auxotrophs reveal a tryptophan- independent biosynthetic pathway for indole-3-acetic acid[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 90:10355-10359. [22] 夏石头, 萧浪涛. 生长素极性运输的调控及其机制[J]. 植物生理学通讯, 2003, 39(3):255-261. [23] 刘士平, 王璐, 王继荣, 等. 高等植物的PIN家族[J]. 植物生理学通讯, 2009, 45(8):833-841. [24] Bainbridge K, Guyomarch S, Bayer E, et al. Auxin influx carriers stabilize phyllotactic patterning[J]. Genes Development, 2008, 22(6):810-823. [25] Peer WA, Blakeslee JJ, Yang H, et al. Seven things we think we know about auxin transport[J]. Molecular Plant, 2011, 4(3):487-504. [26] Feraru E, Friml J. PIN polar targeting[J]. Plant Physiology, 2008, 147:1553-1559. [27] Zhao Y, Wang T, Zhang W, et al. SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis[J]. New Phytologist, 2011, 189:1122-1134. [28] Li G, Xue HW. Arabidopsis PLD ζ 2 regulates vesicle trafficking and is required for auxin response[J]. The Plant Cell, 2007, 19:281-295. [29] Galvan-Ampudia CS, Julkowska MJ, Darwish E, et al. Halotropism is a response of plant roots to avoid a saline environment[J]. Current Biology, 2013, 23:2044-2050. [30] Gao HB, Chu YJ, Xue HW. Phosphatidic acid(PA)binds PP2AA1 to regulate PP2A activity and PIN1 polar localization[J]. Molecular Plant, 2013, 6:1692-1702. [31] Xu ZS, Liu L, Ni ZY, et al. W55a encodes a novel protein kinase that is involved in multiple stress responses[J]. Journal of Integrative Plant Biology, 2009, 51(1):58-66. [32] 孙大业. 植物细胞信号转导研究进展[J]. 植物生理学通讯, 1996, 32(2):81-91. [33] Bayerr G, Stael S, Rocha AG, et al. Chloroplast-localized protein kinases:A step forward towards a complete inventory[J]. Journal of Experimental Botany, 2012, 63(4):1713-1723. [34] Menke FLH, Van Pelt JA, Pieterse CMJ, et al. Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis[J]. The Plant Cell, 2004, 16(4):897-907. [35] Ichimura K, Mizoguchi T, Yoshida R, et al. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6[J]. The Plant Journal, 2000, 24:655-665. [36] Yu LJ, Nie JN, Cao CY, et, al. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana[J]. New Phytologist, 2010, 188:762-773. [37] Testerink C, Larsen PB, van der Does D, et al. Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1[J]. Journal of Experimental Botany, 2007, 58:3905-3914. [38] Wang YN, Wang T, Li KX, et al. Genetic analysis of involvement of ETR1 in plant response to salt and osmotic stress[J]. Plant Growth Regulation, 2008, 54:261-269. [39] Lei G, Shen M, Li ZG, et al. EIN2 regulates salt stress response and interacts with a MA3 domain containing protein ECIP1 in Arabidopsis[J]. Plant Cell and Environment, 2011, 34:1678-1692. [40] Anthony RG, Henriques R, Helfer A, et al. A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis[J]. EMBO Journal, 2004, 23:572-581. [41] Zegzouti RG, Anthony N, Jahchan L, et al. Phosphorylation and activation of PINOID by the phospholipid signaling kinase 3-phosphoinositide-dependent protein kinase 1(PDK1)in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103:6404-6409. [42] Galvan-Ampudia CS, Testerink C. Salt stress signals shape the plant root[J]. Current Opinion in Plant Biology, 2011, 13:296-302. [43] Guo L, Mishra G, Taylor K, et al. Phosphatidic acid binds and stimulates Arabidopsis[J]. The Journal of Biological Chemistry, 2011, 286:13336-13345. [44] Guo L, Mishra G. Connections between sphingosine kinase and Phospholipase D in the abscisic acid signaling pathway in Arabidopsis[J]. The Journal of Biological Chemistry, 2012, 287:8286-8296. [45] Xiong LZ, Yang YN. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase[J]. The Plant Cell, 2003, 15(3):745 -759. [46] Lee SK, Kim BG, Kwon TR, et al. Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice(Oryza sativa L. )[J]. Journal of Biosciences, 2011, 36(1):139-151. [47] Sun X, Yang S, Sun M, et al. A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress[J]. Plant Molecular Biology, 2014, 85:33-48. [48] Dammann C, Ichida A, Hong B, et al. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis[J]. Plant Physiology, 2003, 132(4):1840-1848. [49] Campo S, Baldrich P, Messeguer J, et al. Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation[J]. Plant Physiology, 2014, 165(2):688-704. [50] Saijo Y, Hata S, Kyozuka J, et al. Over-expression of a single Ca 2+ -dependent protein kinase confers both cold and salt / drought tolerance onrice plants[J]. The Plant Journal, 2000, 23(3):319-327. [51] Ouyang SQ, Liu YF, Liu P, et al. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice(Oryza sativa)plants[J]. The Plant Journal, 2010, 62(2):316-329. [52] Chen LJ, Wuriyanghan H, Zhang YQ, et al. An s-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced leaf senescence in rice[J]. Plant Physiology, 2013, 163(4):1752-1765. [53] Zhang Q, Lin F, Mao TL, et al. Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis[J]. The Plant Cell, 2012, 24:4555-4576. [54] 时兰春, 王益川, 王伯初. 植物细胞骨架与细胞生长[J]. 植物生理学通讯, 2007, 43:1175-1181. [55] Dhonukshe P, Laxalt AM, Goedhart J, et al. Phospholipase D activation correlates with microtubule reorganization in living plant cells[J]. The Plant Cell, 2003, 15:2666-2679. [56] Wang C, Li J, Yuan M. Salt tolerance requires cortical microtubule reorganization in Arabidopsis[J]. Plant and Cell Physiology, 2007, 48:1534-1547. [57] Mao G, Chan J, Calder Q, et al. Modulated taigeting of GFP-AtMAP65-1 to central spindle microtubules during division[J]. The Plant Journal, 2005, 43:469-478. [58] Komis G, Quader H, Galatis B, et al. Macrotubule-dependent protoplast volume regulation in plasmolysed root-tip cells of Triticum turgidum:involvement of phospholipase D[J]. New Phytologist, 2006, 171:737-750. [59] Beck M, Komis G, Muller J, et al. Arabidopsis homologs of nucleus-and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization[J]. The Plant Cell, 2010, 22:755-771. [60] Huang S, Blanchoin L, Kovar DR, et al. Arabidopsis capping protein(AtCP)is a heterodimer that regulates assembly at the barbed ends of actin filaments[J]. The Journal of Biological Chemistry, 2003, 278:44832-44842. [61] Huang S, Gao L, Blanchoin L, et al. Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid[J]. Molecular Biology of the Cell, 2006, 17:1946-1958. [62] Li J, Henty-Ridilla JL, Huang S, et al. Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis[J]. The Plant Cell, 2012, 24:3742-3754. [63] Wang J, Qian D, Fan T, et al. Arabidopsis actin capping protein(AtCP)subunits have different expression patterns, and downregulation of AtCPB confers increased thermotolerance of Arabidopsis after heat shock stress[J]. Plant Science, 2012:110-119. [64] Gardiner JC, Harper JD, Weerakoon ND, et al. A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane[J]. The Plant Cell, 2001, 13:2143-2158. [65] Zhang W, Wang C, Qin C, et al. The oleate-stimulated phospholipase D, PLDδ, and phosphatidic acid decrease H 2 O 2 -induced cell death in Arabidopsis[J]. The Plant Cell, 2003, 15:2285-2295. [66] Zhang Q, Zhang W. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells[J]. Protein Cell, 2016, 7(2):81-88. [67] Pleskot R, Potocký M, Pejchar P, et al. Mutual regulation of plant phospholipase D and the actin cytoskeleton[J]. The Plant Journal, 2010, 62:494-507. [68] Zhang Y, Zhu H, Zhang Q, et al. Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis[J]. The Plant Cell, 2009, 21:2357-2377. [69] Guo L, Devaiah SP, Narasimhan R, et al. Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenases interact with Phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress[J]. The Plant Cell, 2012, 24:2200-2212. [70] Hirayama T, Ohto C, Mizoguchi T, et al. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(9):3903-3907. [71] Sanchez JP, Chua NH. Arabidopsis PLC1 is required for secondary responses to abscisic acid signals[J]. The Plant Cell, 2001, 13:1143-1154. [72] Xu X, Cao Z, Liu G, et al. Cloning and expression of AtPLC6, a gene encoding a phosphatidylinositol-specific phospholipase C in Arabidopsis thaliana[J]. Chinese Science Bulletin, 2004, 49(4):567-573. [73] Yun JK, Kim JE, Lee JH, et al. The Vr-PLC3 gem encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean(Vigna radiata L.)[J]. FEBS Letters, 2004, 556(1-3):127-136. [74] 王春荣. 磷脂酶C基因的过表达对玉米转基因植株抗逆性的影响[D].济南:山东大学, 2008. [75] 梵文菊.转ZmPLC1基因及聚合ZmPLCa/betA基因棉花耐盐性的研究[D].济南:山东大学, 2013. [76] 王法微.水稻磷脂酶C调节耐盐性以及磷脂酶D参与种子老化的研究[D].南京:南京农业大学, 2011. |
[1] | ZHANG Kun, YAN Chang, TIAN Xin-peng. Research Progress in Microbial Single Cell Separation Methods [J]. Biotechnology Bulletin, 2023, 39(9): 1-11. |
[2] | DING Li, DU Ting-ting, TANG Qiong-ying, GAO Quan-xin, YI Shao-kui, YANG Guo-liang. Analyses of Endocrine Regulation and Expression of Genes Related to the Molting Signaling Pathway in the Molting Cycle of Macrobrachium rosenbergii [J]. Biotechnology Bulletin, 2023, 39(9): 300-310. |
[3] | LIU Jia-hui, LIU Ye, HUA Er-bing, WANG Meng. PAM Extension of Cytosine Base Editing Tool in Corynebacterium glutamicum [J]. Biotechnology Bulletin, 2023, 39(9): 49-57. |
[4] | CHEN Jin-hang, ZHANG Yi, ZHANG Jun-tao, WEI Ben-mei, WANG Hong-xun, ZHENG Ming-ming. Preparation of Immobilized Lipase for the Solvent-free Synthesis of Cinnamyl Acetate [J]. Biotechnology Bulletin, 2023, 39(9): 97-104. |
[5] | ZHAO Si-jia, WANG Xiao-lu, SUN Ji-lu, TIAN Jian, ZHANG Jie. Modification of Pichia pastoris for Erythritol Production by Metabolic Engineering [J]. Biotechnology Bulletin, 2023, 39(8): 137-147. |
[6] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[7] | HAN Zhi-yang, JIA Zi-miao, LIANG Qiu-ju, WANG Ke, TANG Hua-li, YE Xing-guo, ZHANG Shuang-xi. Salt Tolerance at Seedling Stage and Analysis of Selenium and Folic Acid Content in Seeds in Two Sets of Wheat-Dasypyrum villosum Chromosom Additional Lines [J]. Biotechnology Bulletin, 2023, 39(8): 185-193. |
[8] | FU Yu, JIA Rui-rui, HE He, WANG Liang-gui, YANG Xiu-lian. Growth Differences Among Grafted Seedlings with Two Rootstocks of Catalpa bungei and Comparative Analysis of Transcriptome [J]. Biotechnology Bulletin, 2023, 39(8): 251-261. |
[9] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[10] | ZHAO Lin-yan, XU Wu-mei, WANG Hao-ji, WANG Kun-yan, WEI Fu-gang, YANG Shao-zhou, GUAN Hui-lin. Effects of Applying Biochar on the Rhizosphere Fungal Community and Survival Rate of Panax notoginseng Under Continuous Cropping [J]. Biotechnology Bulletin, 2023, 39(7): 219-227. |
[11] | MA Jun-xiu, WU Hao-qiong, JIANG Wei, YAN Geng-xuan, HU Ji-hua, ZHANG Shu-mei. Screening and Identification of Broad-spectrum Antagonistic Bacterial Strains Against Vegetable Soft Rot Pathogen and Its Control Effects [J]. Biotechnology Bulletin, 2023, 39(7): 228-240. |
[12] | ZHOU Wen-han, ZHENG Kang-ning, LI Yong-min. Stellera chamaejasme L. Inhibiting Cell Proliferation by Reducing YAP1 Expression in Hepatocellular Carcinoma [J]. Biotechnology Bulletin, 2023, 39(7): 316-324. |
[13] | WANG Ling, ZHUO Shen, FU Xue-sen, LIU Zi-xuan, LIU Xiao-rong, WANG Zhi-hui, ZHOU Ri-bao, LIU Xiang-dan. Advances in the Biosynthetic Pathways and Related Genes of Lotus Alkaloids [J]. Biotechnology Bulletin, 2023, 39(7): 56-66. |
[14] | ZHANG Zu-lin, LIU Fang-fang, ZHOU Qing-niao, ZHAO Rui-qiang, HE Shu-jia, LIN Wen-zhen. Construction and Identification of Huh7 Hepatoma Cell Line with ACE2 Gene Knockout Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(6): 181-188. |
[15] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||