[1] 王国栋, 陈晓亚. 漆酶的性质、功能、催化机理和应用[J]. 植物学通报, 2003(4):469-475. [2] Hoegger PJ, Kilaru S, James TY, et al. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences[J]. FEBS J, 2006, 273(10):2308-2326. [3] Jeon JR, Baldrian P, Murugesan K, et al. Laccase-catalysed oxidations of naturally occurring phenols:from in vivo biosynthetic pathways to green synthetic applications[J]. Microb Biotechnol, 2012, 5(3):318-332. [4] Rodriguez Couto S, Toca Herrera JL. Industrial and biotechnological applications of laccases:a review[J]. Biotechnol Adv, 2006, 24 (5):500-513. [5] 王祎宁, 赵国柱, 谢响明, 等. 漆酶及其应用的研究进展[J]. 生物技术通报, 2009(5):35-38. [6] Bourbonnais R, Paice MG. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation[J]. FEBS Lett, 1990, 267(1):99-102. [7] Murugesan K. Bioremediation of paper and pulp mill effluents[J]. Indian J Exp Biol, 2003, 41(11):1239-1248. [8] Mikolasch A, Schauer F. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials[J]. Appl Microbiol Biotechnol, 2009, 82(4):605-624. [9] Plonka PM, Grabacka M. Melanin synthesis in microorganisms biotechnological and medical aspects[J]. Acta Biochim Pol, 2006, 53(3):429-443. [10] 张鹏. 以ABTS为底物测定漆酶活力的方法[J]. 印染助剂, 2007(1):43-45. [11] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72:248-254. [12] 冯娟, 李荷. 源于红树林土壤宏基因文库的新型磷脂酶A 1 基因的筛选、克隆表达及酶学性质[J]. 微生物学通报, 2015, 42(3):489-496. [13] 吕季涛, 魏莉, 曹晓璐, 等. 胶孢炭疽菌拮抗菌株的筛选、鉴定及抑菌物物质分析[J]. 河南农业科学, 2015, 44(7):89-93. [14] 夏玉林, 程力慧, 李荷. 南海海洋沉积物中抗肿瘤活性菌株的初步筛选与鉴定[J]. 广东药学院学报, 2014, 30(1):77-30. [15] 刘卫晓, 钱世钧. 酶分子体外定向进化的研究方法[J]. 微生物学通报, 2004, 31(2):100-104. [16] Eijsink VG, Gseidnes S, Borchert TV, et al. Directed evolution of enzyme stability[J]. Biomol Eng, 2005, 22(1/3):21-30. [17] Arnold FH, Wintrode PL, Miyazaki K, et al. How enzymes adapt:lessons from directed evolution[J]. Trends Biochem Sci, 2001, 26(2):100-106. [18] Turner NJ. Directed evolution of enzymes for applied biocatalysis[J]. Trends Biotechnol, 2003, 21(11):474-478. [19] Singh Arora D, Kumar Sharma R. Ligninolytic fungal laccases and their biotechnological applications[J]. Appl Biochem Biotechnol, 2010, 160(6):1760-1788. [20] Camarero S, Ibarra D, Martinez MJ, et al. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes[J]. Appl Environ Microbiol, 2005, 71(4):1775-1784. [21] Kandelbauer A, Maute O, Kessler RW, et al. Study of dye decolorization in an immobilized laccase enzyme-reactor using online spectroscopy[J]. Biotechnol Bioeng, 2004, 87(4):552-563. [22] Hu MR, Chao YP, Zhang GQ, et al. Molecular evolution of Fome lignosus laccase by ethyl methane sulfonate-based random mutagenesis in vitro[J]. Biomolecular Engineering, 2007, 24:619-624. [23] Miele A, Giardina P, Sannia G, et al. Random mutants of a Pleurotus ostreatus laccase as new biocatalysts for industrial effluents bioremediation[J]. Journal of Applied Microbiology, 2010, 3:998-1006. [24] Koschorreck K, Schmid RD, Urlacher VB. Improving the functional expression of a Bacillus licheniformis laccase by random and site-directed mutagensis[J]. BMC Biotechnology, 2009, 9:12-21. |