[1] Tamada H, Thuan NV, Reed P, et al. Chromatin decondensation and nuclear reprogramming by nucleoplasmin[J]. Mol Cell Biol, 2006, 26:1259-1271. [2] Li E. Chromatin modification and epigenetic reprogramming in mammalian development[J]. Nature Reviews Genetics, 2002, 3:662-673. [3] Kass SU, Pruss D, Wolffe AP. How does DNA methylation repress transcription?[J]. Trends in Genetics, 1997, 13:444-449. [4] Reik W, Dean W, Walter Jr. Epigenetic reprogramming in mammalian development[J]. Science, 2001, 293:1089-1093. [5] Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained[J]. Nature Reviews Genetics, 2009, 10:805-811. [6] Zhu JK. Active DNA demethylation mediated by DNA glycosylases [J]. Annu Rev Genet, 2009, 43:143-166. [7] Cortellino S, Xu J, Sannai M, et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair[J]. Cell, 2011, 146:67-79. [8] Ito S, D’Alessio AC, Taranova OV, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification[J]. Nature, 2010, 466:1129-1133. [9] Wossidlo M, Arand J, Sebastiano V, et al. Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes[J]. The EMBO Journal, 2010, 29:1877-1888. [10] Okada Y, Yamagata K, Hong K, et al. A role for the elongator complex in zygotic paternal genome demethylation[J]. Nature, 2010, 463:554-558. [11] Chen T, Li E. Structure and function of eukaryotic DNA methyltransferases[J]. Current Topics in Developmental Biology, 2004, 60:55-89. [12] Schmitz KM, Schmitt N, Hoffmann-Rohrer U, et al. TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation[J]. Molecular Cell, 2009, 33:344-353. [13] Wu SC, Zhang Y. Active DNA demethylation:many roads lead to Rome[J]. Nature Reviews Molecular Cell Biology, 2010, 11:607-620. [14] Cannon SV, Cummings A, Teebor GW. 5-Hydroxymethylcytosine DNA glycosylase activity in mammalian tissue[J]. Biochem Biophys Res Commun, 1988, 151:1173-1179. [15] Kantarjian H, Oki Y, Garcia-Manero G, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia[J]. Blood, 2007, 109:52-57. [16] Yang AS, Doshi KD, Choi SW, et al. DNA methylation changes after 5-aza-2’-deoxycytidine therapy in patients with leukemia[J]. Cancer Res, 2006, 66:5495-5503. [17] Mund C, Hackanson B, Stresemann C, et al. Characterization of DNA demethylation effects induced by 5-Aza-2’-deoxycytidine in patients with myelodysplastic syndrome[J]. Cancer Res, 2005, 65:7086-7090. [18] Issa JPJ, Kantarjian HM, Kirkpatrick P. Azacitidine[J]. Nature Reviews Drug Discovery, 2005, 4:275-276. [19] Conticello SG, Langlois MA, Yang Z, et al. DNA deamination in immunity:AID in the context of its APOBEC relatives[J]. Advances in Immunology, 2007, 94:37-73. [20] Maul RW, et al. Chapter six-AID and somatic hypermutation[J]. Advances in Immunology, 2010, 105:159-191. [21] Muramatsu M, Kinoshita K, Fagarasan S, et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase(AID), a potential RNA editing enzyme[J]. Cell, 2000, 102:553-563. [22] Liu M, Schatz DG. Balancing AID and DNA repair during somatic hypermutation[J]. Trends in Immunology, 2009, 30:173-181. [23] Rai K, Huggins IJ, James SR, et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and Gadd45[J]. Cell, 2008, 135:1201-1212. [24] Morgan H, Dean W, Coker H, et al. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues[J]. Biological Chemistry, 2004, 279:52353-5260. [25] Bhutani N, Brady JJ, Damian M, et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation[J]. Nature, 2010, 463:1042-1047. [26] Popp C, Dean W, Feng S, et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency[J]. Nature, 2010, 463:1101-1105. [27] Pagé-Larivière F, Sirard MA. Spatiotemporal expression of DNA demethylation enzymes and histone demethylases in bovine embryos[J]. Cellular Reprogramming, 2014, 16:40-53. [28] Leutenegger CM, Alluwaimi AM, Smith WL, et al. Quantitation of bovine cytokine mRNA in milk cells of healthy cattle by real-time TaqMan polymerase chain reaction[J]. Vet Immunol Immunopathol, 2000, 77:275-287. [29] Lupien M, Eeckhoute J, Meyer CA, et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription[J]. Cell, 2008, 132:958-970. [30] Shiota K, Kogo Y, Ohgane J, et al. Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice[J]. Genes to Cells, 2002, 7:961-969. [31] Wan J, Oliver VF, Zhu H, et al. Integrative analysis of tissue-specific methylation and alternative splicing identifies conserved transcription factor binding motifs[J]. Nucleic Acids Res, 2013, 41:8503-8514. [32] Siegfried Z, Cedar H. DNA methylation:A molecular lock[J]. Current Biology, 1997, 7:305-307. [33] Weinberg MS, Villeneuve LM, Ehsani A, et al. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells[J]. RNA, 2006, 12:256-262. [34] Santoro R, Grummt I. Epigenetic mechanism of rRNA gene silencing:temporal order of NoRC-mediated histone modification, chromatin remodeling, and DNA methylation[J]. Mol Cell Biol, 2005, 25:2539-2546. [35] Lehnertz B, Ueda Y, Alwin AHA. Derijck, et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin[J]. Curr Biol, 2003, 13:1192-1200. [36] Papp B, Plath K. Epigenetics of reprogramming to induced pluripotency[J]. Cell, 2013, 152:1324-1343. [37] McLay DW, et al. Remodelling the paternal chromatin at fertilizati-on in mammals[J]. Reproduction, 2003, 125:625-633. [38] Rivera RM, Ross JW. Epigenetics in fertilization and preimplantation embryo development[J]. Prog Biophys Mol Biol, 2013, 113:423-432. |