Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (1): 48-57.doi: 10.13560/j.cnki.biotech.bull.1985.2017.01.005
• Orignal Article • Previous Articles Next Articles
KUANG Xue-jun1, ZOU Li-qiu1, SUN Chao1, CHEN Shi-lin2
Received:
2016-10-22
Online:
2017-01-25
Published:
2017-01-19
KUANG Xue-jun, ZOU Li-qiu, SUN Chao, CHEN Shi-lin. Optimization Strategies for Synthetic Biological Systems of Natural Products[J]. Biotechnology Bulletin, 2017, 33(1): 48-57.
[1] Jhelum P, Reddy RG, Kumar A, et al. Natural product based novel small molecules with promising neurotrophic, neurogenic and anti-neuroinflammatory actions can be developed as stroke therapeutics[J]. Neural Regen Res, 2016, 11(6):916-917. [2] Venisetty RK, Ciddi V. Application of microbial biotransformation for the new drug discovery using natural drugs as substrates[J]. Curr Pharm Biotechnol, 2003, 4(3):153-167. [3] Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014[J]. J Nat Prod, 2016, 79(3):629-661. [4] Jones JA, Toparlak ÖD, Koffas MA. Metabolic pathway balancing and its role in the production of biofuels and chemicals[J]. Curr Opin Biotechnol, 2015, 33:52-59. [5] Sun H, Zhao D, Xiong B, et al. Engineering Corynebacterium glutamicum for violacein hyper production[J]. Microb Cell Fact, 2016, 15(1):148. [6] Breitling R, Takano E. Synthetic biology of natural products[J]. Cold Spring Harb Perspect Biol, 2014, doi:10. 1002/9781118794 623. ch19 . [7] Alonso-Gutierrez J, Chan R, Batth TS, et al. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production[J]. Metab Eng, 2013, 19:33-41. [8] Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression[J]. Nat Biotechnol, 2009, 27(10):946-950. [9] Na D, Lee D. RBSDesigner:software for designing synthetic ribosome binding sites that yields a desired level of protein expression[J]. Bioinformatics, 2010, 26(20):2633-2634. [10] Ahmadi MK, Pfeifer BA. Recent progress in therapeutic natural product biosynthesis using Escherichia coli[J]. Curr Opin Biotechnol, 2016, 42:7-12. [11] Santos CN, Koffas M, Stephanopoulos G. Optimization of a heterologous pathway for the production of flavonoids from glucose[J]. Metab Eng, 2011, 13(4):392-400. [12] Na D, Kim TY, Lee SY. Construction and optimization of synthetic pathways in metabolic engineering[J]. Curr Opin Microbiol, 2010, 13(3):363-370. [13] Redding-Johanson AM, Batth TS, Chan R, et al. Targeted proteomics for metabolic pathway optimization:application to terpene production[J]. Metab Eng, 2011, 13(2):194-203. [14] Anthony JR, Anthony LC, Nowroozi F, et al. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4, 11-diene[J]. Metab Eng, 2009, 11(1):13-19. [15] Chlebowicz-Sledziewska E, Sledziewski AZ. Construction of multicopy yeast plasmids with regulated centromere function[J]. Gene, 1985, 39(1):25-31. [16] Lian J, Jin R, Zhao H. Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration[J]. Biotechnol Bioeng, 2016, 113(11):2462-2473. [17] Jawed K, Mattam AJ, Fatma Z, et al. Engineered production of short chain fatty acid in Escherichia coli using fatty acid synthesis pathway[J]. PLoS One, 2016, 11(7):e0160035. [18] Kong JQ, Wang W, Wang LN. The improvement of amorpha-4, 11-diene production by a yeast-conform variant[J]. J Appl Microbiol, 2009, 106(3):941-951. [19] Shao M, Sha Z, Zhang X, et al. Efficient androst-1, 4-diene-3, 17-dione production by coexpressing 3-ketosteroid-Δ1-dehydrogenase and catalase in Bacillus subtilis[J]. J Appl Microbiol, 2016, doi:10. 1111/jam. 13336. [20] Orlenko A, Teufel AI, Chi PB, et al. Selection on metabolic pathway function in the presence of mutation-selection-drift balance leads to rate-limiting steps that are not evolutionarily stable[J]. Biol Direct, 2016, 11:31. [21] Chen X, Zhu P, Liu L. Modular optimization of multi-gene pathways for fumarate production[J]. Metab Eng, 2016, 33:76-85. [22] Wu J, Du G, Zhou J, et al. Metabolic engineering of Escherichia coli for(2S)-pinocembrin production from glucose by a modular metabolic strategy[J]. Metab Eng, 2013, 16:48-55. [23] Liu Y, Zhu Y, Li J, et al. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production[J]. Metab Eng, 2014, 23:42-52. [24] Zhao J, Li Q, Sun T, et al. Engineering central metabolic modules of Escherichia coli for improving β-carotene production[J]. Metab Eng, 2013, 17:42-50. [25] Chen X, Zhu P, Liu L. Modular optimization of multi-gene pathways for fumarate production[J]. Metab Eng, 2016, 33:76-85. [26] Sharan SK, Thomason LC, Kuznetsov SG, et al. Recombineering:A homologous recombination-based method of genetic engineering[J]. Nat Protoc, 2009, 4(2):206-223. [27] Carr PA, Wang HH, Sterling B, et al. Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection[J]. Nucleic Acids Res, 2012, 40(17):e132. [28] Wang HH, Isaacs FJ, Carr PA, et al. Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature, 2009, 460(7257):894-898. [29] Li Y, Gu Q, Lin Z, et al. Multiplex iterative plasmid engineering for combinational optimization of metabolic pathways and diversification of protein coding sequences[J]. ACS Synth Biol, 2013, 2(11):651-661. [30] Santos CN, Stephanopoulos G. Combinatorial engineering of microbes for optimizing cellular phenotype[J]. Curr Opin Chem Biol, 2008, 12(2):168-176. [31] Liu W, Jiang R. Combinatorial and high-throughput screening approached for strain engineering[J]. Appl Microbiol Biotechnol, 2015, 99(5):2093-2104. [32] Du J, Yuan Y, Si T, et al. Customized optimization of metabolic pathways by combinatorial transcriptional engineering[J]. Nucleic Acids Res, 2012, 40(18):e142. [33] Klein-Marcuschamer D, Yadav VG, Ghaderi A, et al. De novo metabolic engineering and the promise of synthetic DNA[J]. Adv Biochem Eng Biotechnol, 2010, 120:101-131. [34] Li XR, Tian GQ, Shen HJ, et al. Metabolic engineering of Escherichia coli to produce zeaxanthin[J]. J Ind Microbiol Biotechnol, 2015, 42(4):627-36. [35] Pfleger BF, Pitera DJ, Smolke CD, et al. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes[J]. Nat Biotechnol, 2006, 24(8):1027-1032. [36] Fatma Z, Jawed K, Mattam AJ, et al. Identification of long chain specific aldehyde reductase and its use in enhanced fatty alcohol production in E. coli[J]. Metab Eng, 2016, 37:35-45. [37] Santos CN, Xiao W, Stephanopoulos G. Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli[J]. Proc Natl Acad Sci U S A, 2012, 109(34):13538-13543. [38] Rodríguez-Villalón A, Pérez-Gil J, Rodríguez-Concepción M. Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways[J]. J Biotechnol, 2008, 135(1):78-84. [39] Zhou Y, Nambou K, Wei L, et al. Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase[J]. Biotechnol Lett, 2013, 35(12):2137-2145. [40] Cui H, Ni X, Shao W, et al. Functional manipulations of the tetramycin positive regulatory gene ttmRIV to enhance the production of tetramycin A and nystatin A1 in Streptomyces anygroscopicus[J]. J Ind Microbiol Biotechnol, 2015, 42(9):1273-1282. [41] Paradise EM, Kirby J, Chan R, et al. Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase[J]. Biotechnol Bioeng, 2008, 100(2):371-378. [42] Westfall P, Pitera DJ, Lenihan JR, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. Proc Natl Acad Sci USA, 2012, 109(3):E111-118. [43] Bunet R, Song L, Mendes MV, et al. Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of Kinamycins[J]. J Bacteriol, 2011, 193(5):1142-1153. [44] Lian J, Si T, Nair NU, et al. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains[J]. Metab Eng, 2014, 24:139-149. [45] Lee DW, Ng BG, Kim BS. Increased valinomycin production in mutants of Streptomyces sp. M10 defective in bafilomycin biosynthesis and branched-chain alpha-keto acid dehydrogenase complex expression[J]. J Ind Microbiol Biotechnol, 2015, 42(11):1507-1517. [46] Kelkar YD, Ochman H. Genome reduction promotes increase in protein function complexity in bacteria[J]. Genetics, 2013, 193(1):303-307. [47] Csörgõ B, Nyerges Á, Pósfai G. System-level genome editing in microbes[J]. Curr Opin Microbiol, 2016, 33:113-122. [48] Komatsu M, Uchiyama T, Omura S, et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism[J]. Proc Natl Acad Sci U S A, 2010, 107(6):2646-2651. [49] Komatsu M, Komatsu K, Koiwai H, et al. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites[J]. ACS Synth Biol, 2013, 2(7):384-396. [50] Lau J, Frykman S, Regentin R, et al. Optimizing the heterologous production of epothilone D in Myxococcus xanthus[J]. Biotechnol Bioeng, 2002, 78(3):280-288. [51] Bonartsev AP, Zharkova II, Yakovlev SG, et al. Biosynthesis of poly(3-hydroxybutyrate)copolymers by Azotobacter chroococcum 7B:A precursor feeding strategy[J]. Prep Biochem Biotechnol, 2016:1-12. [52] Saha SP, Patra A, Paul AK. Incorporation of polyethylene glycol in polyhydroxyalkanoic acids accumulated by Azotobacter chroococcum MAL-201[J]. J Ind Microbiol Biotechno, 2006, 33(5):377-383. [53] Du J, Li L, Zhou S. Enhanced cyanophycin production by Escherichia coli overexpressing the heterologous cphA gene from a deep sea metagenomic library[J]. J Biosci Bioeng, 2016, pii:S1389-1723(16)30208-0. [54] Dhakal D, Chaudhary AK, Yi JS, et al. Enhanced production of nargenicin A1 and creation of a novel derivative using a synthetic biology platform[J]. Appl Microbiol Biotechnol, 2016, 100(23):9917-9931. [55] Ujor V, Agu CV, Gopalan V, et al. Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation[J]. Appl Microbiol Biotechnol, 2014, 98(14):6511-6521. [56] Yi JS, Kim MS, Kim SJ, et al. Effects of sucrose, phosphate, and calcium carbonate on the production of pikromycin from Streptomyces venezuelae[J]. J Microbiol Biotechnol, 2015, 25(4):496-502. [57] Cheigh CI, Choi HJ, Park H, et al. Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi[J]. J Biotechnol, 2002, 95(3):225-235. [58] Chander H, Batish VK, Babu S, et al. Amine production by Streptococcus lactis under different growth conditions[J]. Acta Microbiol Pol, 1988, 37(1):61-64. [59] Ran H, Wu J, Wu D, et all. Enhanced production of recombinant Thermobifida fusca isoamylase in Escherichia coli MDS42[J]. Appl Biochem Biotechnol, 2016, 180(3):464-476. [60] Sassi H, Delvigne F, Kar T, et al. Deciphering how LIP2 and POX2 promoters can optimally regulate recombinant protein production in the yeast Yarrowia lipolytica[J]. Microb Cell Fact, 2016, 15(1):159 [61] Alper H, Stephanopoulos G. Global transcription machinery engineering:a new approach for improving cellular phenotype[J]. Metab Eng, 2007, 9(3):258-267. [62] Carbonell P, Currin A, Jervis AJ, et al. Bioinformatics for the synthetic biology of natural products:integrating across the Design-Build-Test cycle[J]. Nat Prod Rep, 2016, 33(8):925-932. [63] Billingsley JM, DeNicola AB, Tang Y. Technology development for natural product biosynthesis in Saccharomyces cerevisiae[J]. Curr Opin Biotechnol, 2016, 42:74-83. [64] Tsao CY, Hooshangi S, Wu HC, et al. Autonomous induction of recombinant proteins by minimally rewiring native quorum sensing regulon of E. coli[J]. Metab Eng, 2010, 12(3):291-297. [65] Pankowicz FP, Barzi M, Legras X, et al. Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia[J]. Nat Commun, 2016, 7:12642. [66] Dueber JE, Wu GC, Malmirchegini GR, et al. Synthetic protein scaffolds provide modular control over metabolic flux[J]. Nat Biotechnol, 2009, 27(8):753-759. [67] Farhi M, Marhevka E, Masci T, et al. Harnessing yeast subcellular compartments for the production of plant terpenoids[J]. Metab Eng, 2011, 13(5):474-481. |
[1] | ZHOU Lu-qi, CUI Ting-ru, HAO Nan, ZHAO Yu-wei, ZHAO Bin, LIU Ying-chao. Application of Chemical Proteomics in Identifying the Molecular Targets of Natural Products [J]. Biotechnology Bulletin, 2023, 39(9): 12-26. |
[2] | JIANG Hai-rong, CUI Ruo-qi, WANG Yue BAI, Miao ZHANG, Ming-lu , REN Lian-hai. Isolation, Identification and Degradation Characteristics of Functional Bacteria for NH3 and H2S Degradation [J]. Biotechnology Bulletin, 2023, 39(9): 246-254. |
[3] | ZHANG Yue-yi, LAN She-yi, PEI Hai-run, FENG Di. Process Optimization of Multi-strain Fermented Oat Bran and Hair Efficacy Evaluation [J]. Biotechnology Bulletin, 2023, 39(9): 58-70. |
[4] | ZHAO Guang-xu, YANG He-tong, SHAO Xiao-bo, CUI Zhi-hao, LIU Hong-guang, ZHANG Jie. Phosphate-solubilizing Properties and Optimization of Cultivation Conditions of Penicillium rubens: A Highly Efficient Phosphate Solubilizer [J]. Biotechnology Bulletin, 2023, 39(9): 71-83. |
[5] | CHENG Ya-nan, ZHANG Wen-cong, ZHOU Yuan, SUN Xue, LI Yu, LI Qing-gang. Synthetic Pathway Construction of Producing 2'-fucosyllactose by Lactococcus lactis and Optimization of Fermentation Medium [J]. Biotechnology Bulletin, 2023, 39(9): 84-96. |
[6] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[7] | YUAN Ye, ZHOU Jia, QU Jian-hang, ZHANG Bo-yuan, LUO Yu, LI Hai-feng. Screening of an Efficient Denitrifying Phosphorus-accumulating Bacterium and Its Denitrification and Phosphorus Removal [J]. Biotechnology Bulletin, 2023, 39(7): 266-276. |
[8] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[9] | WANG Xiao-mei, YANG Xiao-wei, LI Hui-shang, HE Wei, XIN Zhu-lin. Development Status of Synthetic Biology in Globe and Its Enlightenment [J]. Biotechnology Bulletin, 2023, 39(2): 292-302. |
[10] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[11] | CHE Yong-mei, LIU Guang-chao, GUO Yan-ping, YE Qing, ZHAO Fang-gui, LIU Xin. Preparation of Compound Halotolerant Bioinoculant and Study on Its Growth-promoting Effect [J]. Biotechnology Bulletin, 2023, 39(11): 217-225. |
[12] | ZHOU Shan-shan HUANG Yuan-long HUANG Jian-zhong LI Shan-ren. Research Progress in Bioactive Natural Products from Lysobacter [J]. Biotechnology Bulletin, 2023, 39(10): 41-49. |
[13] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[14] | WANG Shuai, LV Hong-rui, ZHANG Hao, WU Zhan-wen, XIAO Cui-hong, SUN Dong-mei. Whole-Genome Sequencing Identification of Phosphate-solubilizing Bacteria PSB-R and Analysis of Its Phosphate-solubilizing Properties [J]. Biotechnology Bulletin, 2023, 39(1): 274-283. |
[15] | HUANG Hai-chen, LI Xiao-min, XUE Fan-zheng, WU Xiao-ping, ZHANG Jun-li, FU Jun-sheng. Screening, Identification, and Optimization of Culture Conditions of a Melanin High-yielding Strain of Hypoxylon sp. [J]. Biotechnology Bulletin, 2023, 39(1): 284-294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||