Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (12): 37-44.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0506
Previous Articles Next Articles
HU Xiao1, HOU Xu2, YUAN Xue2, GUAN Dan1, LIU Yue-ping2, 3
Received:
2017-06-16
Online:
2017-12-25
Published:
2017-12-21
HU Xiao, HOU Xu, YUAN Xue, GUAN Dan, LIU Yue-ping. Research Progress on Mechanism of ARF and Aux/IAA Regulating Fruit Development and Ripening[J]. Biotechnology Bulletin, 2017, 33(12): 37-44.
[1]Kazan K, Manners JM. Linking development to defense:auxin in plant-pathogen interactions[J]. Trends in Plant Science, 2009, 14(7):373-382. [2]Guilfoyle TJ. Aux/IAA proteins and auxin signal transduction[J]. Trends in Plant Science, 1998, 3(6):205-207. [3]Guilfoyle TJ, Hagen G. Auxin response factors[J]. Journal of Plant Growth Regulation, 2001, 10(3):453-460. [4]Shiv B. Tiwari GHTG. The roles of auxin response factor domains in auxin-responsive transcription[J]. Plant Cell, 2003, 15(2):533-543. [5]Woodward AW, Bartel B. Auxin:regulation, action, and interaction[J]. Annals of Botany, 2005, 95(5):707-735. [6]Guilfoyle TJ. Chapter 19 - Auxin-regulated genes and promoters[J]. New Comprehensive Biochemistry, 1999, 33:423-459. [7]Wang D, Pei K, Fu Y, et al. Genome-wide analysis of the auxin response factors(ARF)gene family in rice(Oryza sativa)[J]. Gene, 2007, 394(2):13-24. [8]Thakur JK, Jain M, Tyagi AK, et al. Exogenous auxin enhances the degradation of a light down-regulated and nuclear-localized OsIAA1, an AUX/IAA protein from rice, via proteasome[J]. Biochimica Et Biophysica Acta, 2005, 1730(3):196-205. [9]Van HaC, Le DT, Nishiyama R, et al. The auxin response factor transcription factor family in soybean:genome-wide identification and expression analyses during development and water stress[J]. DNA Research, 2013, 20(5):511-524. [10]Singh VK, Jain M. Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean[J]. Frontiers in Plant Science, 2015, 6:918. [11]Kalluri UC, Difazio SP, Brunner A M, et al. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa[J]. BMC Plant Biology, 2007, 7(1):59. [12]Liu SQ, Hu LF. Genome-wide analysis of the auxin response factor gene family in cucumber[J]. Genetics & Molecular Research Gmr, 2013, 12(4):4317-4331. [13]王垒, 娄丽娜, 闫立英, 等. 黄瓜果实发育早期Aux/IAA家族部分基因的差异表达分析[J]. 南京农业大学学报, 2011, 34(4):13-17. [14]Kumar R, Tyagi AK, Sharma AK. Genome-wide analysis of auxin response factor(ARF)gene family from tomato and analysis of their role in flower and fruit development[J]. Molecular Genetics and Genomics, 2011, 285(3):245-260. [15]Audrandelalande C, Bassa C, Mila I, et al. Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato[J]. Plant & Cell Physiology, 2012, 53(4):659-672. [16]Xie R, Pang S, Ma Y, et al. The ARF, AUX/IAA and GH3 gene families in citrus:genome-wide identification and expression analysis during fruitlet drop from abscission zone A[J]. Molecular Genetics and Genomics, 2015, 290(6):2089-2105. [17]Wan S, Li W, Zhu Y, et al. Genome-wide identification, characterization and expression analysis of the auxin response factor gene family in Vitis vinifera[J]. Plant Cell Reports, 2014, 33(8):1365-1375. [18]?akir B, Kili?kaya O, Olcay A C. Genome-wide analysis of Aux/IAA genes in Vitis vinifera:cloning and expression profiling of a grape Aux/IAA gene in response to phytohormone and abiotic stresses[J]. Acta Physiologiae Plantarum, 2013, 35(2):365-377. [19]Li H, Ran K, Sun Q. Genome-wide identification and expression analysis of peach auxin response factor gene families[J]. Journal of Plant Biochemistry & Biotechnology, 2016, 25(4):1-9. [20]焦云, 马瑞娟, 沈志军, 等. 桃果实花色素苷积累与ABP1、ARF6表达分析[J]. 中国南方果树, 2015, 44(1):12-16. [21]Li SB, Ouyang WZ, Hou XJ, et al. Genome-wide identification, isolation and expression analysis of auxin response factor(ARF)gene family in sweet orange(Citrus sinensis)[J]. Frontiers in Plant Science, 2015, 6:119. [22] Liu K, Yuan C, Li H, et al. Genome-wide identification and characterization of auxin response factor(ARF)family genes related to flower and fruit development in papaya(Carica papaya L.)[J]. Bmc Genomics, 2015, 16(1):1-12. [23]Hu W, Zuo J, Hou X, et al. The auxin response factor gene family in banana:genome-wide identification and expression analyses during development, ripening, and abiotic stress[J]. Frontiers in Plant Science, 2015, 6:742. [24]张敬虎, 潘一山, 王少峰, 等. 柚AUX/IAA基因族的基因注释分析[J]. 福建热作科技, 2015(4):5-11. [25]刘振华, 于延冲, 向凤宁. 生长素响应因子与植物的生长发育[J]. 遗传, 2011, 33(12):1335-1346. [26]Gray WM, del Pozo JC, Walker L, et al. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana[J]. Genes & Development, 1999, 13(13):1678-1691. [27]Vernoux T, Brunoud G, Farcot E, et al. The auxin signalling network translates dynamic input into robust patterning at the shoot apex[J]. Molecular Systems Biology, 2011, 7(1):508-508. [28]Hardtke CS, Ckurshumova W, Vidaurre DP, et al. Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4[J]. Development, 2004, 131(5):1089-1100. [29]Schruff MC, Spielman M, Tiwari S, et al. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs[J]. Development, 2006, 133(133):251-261. [30]Schlereth A, M?ller B, Liu W, et al. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor[J]. Nature, 2010, 464(7290):913-916. [31]Mallory AC, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes[J]. Plant Cell, 2005, 17(5):1360-1375. [32]Wang S, Tiwari SB, Hagen G, et al. AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arab-idopsis leaf mesophyll protoplasts[J]. Plant Cell, 2005, 17(7):1979-1993. [33] 杨俊. 拟南芥生长素响应因子ARF17调控花粉壁模式形成[D]. 上海:上海师范大学, 2013. [34]Przemeck GKH, Mattsson J, Hardtke CS, et al. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization[J]. Planta, 1996, 200(2):229-237. [35]Hardtke CS, Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development[J]. Embo Journal, 1998, 17(5):1405-1411. [36]Zhao Z, Andersen S U, Ljung K, et al. Hormonal control of the shoot stem-cell niche[J]. Nature, 2010, 465(7301):1089-1092. [37]Donner TJ, Sherr I, Scarpella E. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves[J]. Development, 2009, 136(19):3235-46. [38]Wu J, Wang F, Cheng L, et al. Identification, isolation and expression analysis of auxin response factor(ARF)genes in Solanum lycopersicum[J]. Plant Cell Reports, 2011, 30(11):2059-2073. [39]Goetz M, Hooper LC, Johnson SD, et al. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato[J]. Plant Physiology, 2007, 145(2):351-366. [40]Du L, Bao C, Hu T, et al. SmARF8, a transcription factor involved in parthenocarpy in eggplant[J]. Molecular Genetics and Genomics, 2016, 291(1):1-13. [41]De J M, Wolters-Arts M, Feron R, et al. The Solanum lycopersicum auxin response factor7(Sl ARF7)regulates auxin signaling during tomato fruit set and development[J]. Plant Journal, 2009, 57(1):160-170. [42]Sagar M, Chervin C, Roustant JP, et al. Under-expression of the Auxin Response Factor Sl-ARF4 improves postharvest behavior of tomato fruits[J]. Plant Signaling & Behavior, 2013, 8(10):10-4161. [43]Sagar M, Chervin C, Mila I, et al. Sl-ARF4, an Auxin Response Factor involved in the control of sugar metabolism during tomato fruit development[J]. Plant Physiology, 2013, 161(3):1362-1374. [44]Nagpal P, Ellis CM, Weber H, et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation[J]. Development, 2005, 132(18):4107-4118. [45]李慧峰, 冉昆, 何平, 等. 苹果生长素响应因子(ARF)基因家族全基因组鉴定及表达分析[J]. 植物生理学报, 2015(7):1045-1054. [46] 朱立新, 李光晨. 面向21世纪课程教材-园艺通论[M]. 第2版. 北京:中国农业大学出版社, 2005. [47]史梦雅, 张巍, 余佳, 等. 桃生长素反应因子和生长素/吲哚乙酸蛋白家族基因的克隆及表达分析[J]. 园艺学报, 2014, 41(3):536-544. [48]Shen CJ, Wang SK, Bai YH, et al. Functional analysis of the structural domain of ARF proteins in rice(Oryza sativa L.)[J]. Journal of Experimental Botany, 2010, 61(14):3971-3981. [49]Tiwari SB, Hagen G, Guilfoyle TJ. Aux/IAA proteins contain a potent transcriptional repression domain[J]. Plant Cell, 2004, 16(2):533-543. [50]Dreher KA, Brown J, Saw RE, et al. The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness[J]. Plant Cell, 2006, 18(3):699-714. [51]Wang H, Bouzayen M. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis[J]. Plant Cell, 2005, 17(10):2676-2692. [52]Szemenyei H, Hannon M, Long JA. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis[J]. Science, 2008, 319(5868):1384-1386. [53]Rogg LE, Lasswell J, Bartel B. A Gain-of-function mutation in IAA28 suppresses lateral root development[J]. Plant Cell, 2001, 13(3):465-480. [54]Zhang J, Chen R, Xiao J, et al. Isolation and characterization of SlIAA3, an Aux/IAA gene from tomato[J]. Mitochondrial DNA, 2007, 18(6):407-414. [55]Kloosterman B, Visser RG, Bachem CW. Isolation and characterization of a novel potato Auxin/Indole-3-Acetic Acid family member(StIAA2)that is involved in petiole hyponasty and shoot morphogenesis[J]. Plant Physiology & Biochemistry, 2006, 44(11-12):766-775. [56]Yang X, Lee S, So JH, et al. The IAA1 protein is encoded by AXR5 and is a substrate of SCF(TIR1)[J]. Plant Journal, 2004, 40(5):772-782. [57]Chaabouni S, Jones B, Delalande C, et al. Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth[J]. Journal of Experimental Botany, 2009, 60(4):1349-1362. [58]Bassa C, Mila I, Bouzayen M, et al. Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato[J]. Plant & Cell Physiology, 2012, 53(9):1583-1595. [59]Su L, Bassa C, Audran C, et al. The Auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion[J]. Plant & Cell Physiology, 2014, 55(11):1969-1976. [60]Liu DJ, Chen JY, Lu WJ. Expression and regulation of the early auxin-responsive Aux/IAA genes during strawberry fruit development[J]. Molecular Biology Reports, 2011, 38(2):1187-1193. [61]Shani E, Salehin M, Zhang Y, et al. Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors[J]. Current Biology Cb, 2017, 27(3):437-444. [62]Guilfoyle TJ, Hagen G. Getting a grasp on domain III/IV responsible for Auxin Response Factor-IAA protein interactions[J]. Plant Science, 2012, 190(3):82-88. [63]Lavy M, Prigge MJ, Tao S, et al. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins[J]. Elife, 2016, 5:e13325. [64]Piya S, Shrestha SK, Binder B, et al. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis[J]. Frontiers in Plant Science, 2014, 5:744. [65]Llères D, Swift S, Lamond AI. Detecting protein-protein interactions in vivo with FRET using multiphoton fluorescence lifetime imaging microscopy(FLIM)[J]. Curr Protoc Cytom, 2007, Chapter 12:Unit12. [66]Weijers D, Benkova E, J?ger KE, et al. Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators[J]. Embo Journal, 2005, 24(10):1874-1885. [67]Tatematsu K, Kumagai S, Muto H, et al. MASSUGU2 encodes aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(2):379-393. [68]Arase F, Nishitani H, Egusa M, et al. IAA8 involved in lateral root formation interacts with the TIR1 Auxin receptor and ARF transcription factors in Arabidopsis[J]. PLoS One, 2012, 7(8):e43414. [69]Shen CJ, Bai YH, Wang SK, et al. Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress[J]. Febs Journal, 2010, 277(14):2954-2969. [70]Simonini S, Deb J, Moubayidin L, et al. A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis[J]. Genes & Development, 2016,30(20):2286-2296. |
[1] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[2] | ZHENG Huan, LIN Dong-mei, LIU Jun-yuan, ZHANG Yin-lian, LIN Biao-sheng, LIN Zhan-xi, LI Jing. Analysis of Amino Acid Metabolism Difference Between Fruiting Body and Mycelium of Taiwanofungus camphoratus by LC-QTOF-MS Metabonomics [J]. Biotechnology Bulletin, 2023, 39(5): 254-266. |
[3] | LAI Rui-lian, FENG Xin, GAO Min-xia, LU Yu-dan, LIU Xiao-chi, WU Ru-jian, CHEN Yi-ting. Genome-wide Identification of Catalase Family Genes and Expression Analysis in Kiwifruit [J]. Biotechnology Bulletin, 2023, 39(4): 136-147. |
[4] | ZHANG Le-le, WANG Guan, LIU Feng, HU Han-qiao, REN Lei. Isolation, Identification and Biocontrol Mechanism of an Antagonistic Bacterium Against Anthracnose on Mango Caused by Colletotrichum gloeosporioides [J]. Biotechnology Bulletin, 2023, 39(4): 277-287. |
[5] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[6] | MAO Ke-xin, WANG Hai-rong, AN Miao, LIU Teng-fei, WANG Shi-jin, LI Jian, LI Guo-tian. Identification of GRAS Gene Family and Expression Analysis Under Low Temperature Stress in Actinidia chinensis [J]. Biotechnology Bulletin, 2023, 39(11): 297-307. |
[7] | LIU Yuan-yuan, WEI Chuan-zheng, XIE Yong-bo, TONG Zong-jun, HAN Xing, GAN Bing-cheng, XIE Bao-gui, YAN Jun-jie. Characteristics of Class II Peroxidase Gene Expression During Fruiting Body Development and Stress Response in Flammulina filiformis [J]. Biotechnology Bulletin, 2023, 39(11): 340-349. |
[8] | ZHANG Ling, ZHANG Rong-yi, LIU Sheng-ke, TAN Zhi-qiong. Screening of Antagonistic Bacteria for Bacterial Fruit Blotch of Cucurbits and Its Antibacterial Effects [J]. Biotechnology Bulletin, 2023, 39(1): 253-263. |
[9] | LI Yi-dan, SHAN Xiao-hui. Gibberellin Metabolism Regulation and Green Revolution [J]. Biotechnology Bulletin, 2022, 38(2): 195-204. |
[10] | SUN Yan, WANG Jin-gang, ZANG Dan-dan, ZHAO Heng-tian, LIU Shu-hua. Transcriptome Analysis of Lonicera caerulea Fruits at Different Developmental Stages [J]. Biotechnology Bulletin, 2022, 38(12): 204-213. |
[11] | MA Qi, LI Ji-lian, XU Shou-zhen, CHEN Hong, LIU Wen-hao, NING Xinzhu, LIN Hai. Genetic Analysis of FBA Trait in Upland Cotton with Major Gene Plus Polygenes Mixed Genetic Model [J]. Biotechnology Bulletin, 2022, 38(10): 148-158. |
[12] | ZHANG Ying-cai, HUANG Yue, HAI Yuan, ZHANG Yuan, HU Ya-jie, ZHAO Meng-yi. Method Application of Leading Fluorescent Tracers into the Vascular Tissues of Ziziphus jujuba Mill cv. Lingwuchangzao Fruits [J]. Biotechnology Bulletin, 2021, 37(6): 295-304. |
[13] | ZHU Hai-yun, MA Yu, KE Yang, LI Bo. Screening and Identification of an Antagonist Against the Pathogen of Kiwifruit Canker and Its Antifungal Activity to the Phytopathogenic Fungus [J]. Biotechnology Bulletin, 2021, 37(6): 66-72. |
[14] | WANG Lu-lu, GENG Xing-min, XU Shi-da. Ethylene Receptor in Fruit Ripening and Flower Senescence [J]. Biotechnology Bulletin, 2021, 37(3): 144-152. |
[15] | LI Ling, YANG Li-xia, GUO Mei. Function of Transcription Factor CNR in the Ripening Process of Tomato Fruit [J]. Biotechnology Bulletin, 2021, 37(2): 51-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||