Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (3): 52-57.doi: 10.13560/j.cnki.biotech.bull.1985.2017.03.008
Previous Articles Next Articles
DENG Yu-qing1, LI Ping1, ZHOU Yan1, XIONG Ke-cai2, LI Zhong-an1
Received:
2016-06-17
Online:
2017-03-26
Published:
2017-03-07
DENG Yu-qing, LI Ping, ZHOU Yan, XIONG Ke-cai, LI Zhong-an. Progress on Detection Technology of Programmed Cell Death in Plant[J]. Biotechnology Bulletin, 2017, 33(3): 52-57.
[1] Bialik S, Zalckvar E, Ber Y, et al. Systems biology analysis of progr-ammed cell death [J]. Trends Biochem Sci, 2010, 10:556-564. [2] 李云霞, 程晓霞, 代小梅, 等. 植物在逆境胁迫中的细胞程序性死亡[J]. 生物技术通报, 2009,(4):7-11. [3] Zhan J, He HY, Wang TJ, et al. Aluminum-induced programmed cell death promoted by AhSAG, a senescence-associated gene in Arachis hypoganea L. [J]. Plant Science, 2013, 210C(9):108-117. [4] Greenberg JT, Yao N. The role and regulation of programmed cell death in plant-pathogen interactions [J]. Cellular Microbiology, 2004, 6(3):201-211. [5] van Doon WG, Beers EP, Dangl JL, et al. Morphological classifica-tion of plant cell deaths[J]. Cell Death Differ, 2011, 8:1241-1246. [6] Zhou YF, Liu WZ. Laticiferous canal formation in fruits of Decaisnea fargesii:a programmed cell death process? [J]. Protoplasma, 2010, 248(4):683-694. [7] Dauphinee AN, Warner TS, Gunawardena AH. A comparison of induced and developmental cell death morphologies in lace plant(Aponogeton madagascariensis)leaves [J]. Bmc Plant Biology, 2014, 14(1):1-13. [8] Pang N, Zhang F. Hypoxia-induced programmed cell death in root-tip meristematic cells of Triticum aestivum L .[J]. Acta Biologica Cracoviensia S Botanica, 2015, 57(1):51-61. [9] 李荣峰, 蔡妙珍, 刘鹏, 等. Al 3+ 对大豆根边缘细胞程序性死亡诱导的生理生态作用[J]. 植物生态学报, 2008, 3:690-697. [10] Kunikowska A, Byczkowska A, Kaźmierczak A. Kinetin induces cell death in root cortex cells of Vicia faba ssp. minor seedlings [J]. Protoplasma, 2013, 250(4):851-861. [11] 方策. 伏马菌素诱导拟南芥程序性细胞死亡的细胞生物学研究[D]. 广州:中山大学, 2011. [12] Wang Q, Wang XF. Cell death of Ulmus pumila L.seeds during aging and ROS-caspse-3-like pathway mechanism [J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(5):948-955. [13] Floresrentería L, Orozcoarroyo G, et al. Programmed cell death promotes male sterility in the functional dioecious Opuntia stenopetala(Cactaceae)[J]. Ann Bot, 2013, 5:789-800. [14] Ulukaya E, Acilan C, Ari F, et al. A glance at the methods for detection of apoptosis qualitatively and quantitatively [J]. Turkish Journal of Biochemistry, 2011, 36(3):261-269. [15] Rybaczek D, Musiałek MW. A Balcerczyk. Caffeine-induced premature chromosome condensation results in the apoptosis-like programmed cell death in root meristems of Vicia faba [J]. PLoS One,2015, 10(11):e0142307. [16] Chen Y, Chen X, Wang HG, et al. Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize [J]. Proteome Science, 2014, 12(12):1-18. [17] Pan YJ, Liu L, Lin YC, et al. Ethylene antagonizes salt-induced growth retardation and cell death process via transcriptional controlling of ethylene-, BAG- and senescence-associated genes in Arabidopsis [J]. Frontiers in Plant Science, 2016, 7(175):696. [18] Chen X, et al. Evidence of programmed cell death induced by reco-nditioning after cold stress in cucumber fruit and possible involve-ment of ethylene [J]. J Sci Food Agric, 2014, 7:1299-1304. [19] 金钢. 黑松与松材线虫互作过程中细胞程序性死亡的研究[D]. 南京:南京林业大学, 2007. [20] 范涛, 任斌, 韩青梅, 等. 山定子抗苹果褐斑病菌侵染过程中DNA ladder与类caspases活性的检测[J]. 干旱地区农业研究, 2015(1):42-47. [21] Ostling O, Johanson KJ. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells [J]. Biochem Biophys Res Communi, 1984, 123(1):291-298. [22] McCarthy PJ, Sweetman SF, Mckenna PG, et al. Evaluation of manual and image analysis quantification of DNA damage in the alkaline comet assay [J]. Mutagenesis, 1997, 12(4):209-214. [23] Koppen G, Verschaeve L. The alkaline comet test on plant cells:a new genotoxicity test for DNA strand breaks in vicia faba root cells [J]. Mutat Res, 1996, 360(3):193-200. [24] 蒋磊, 王静, 王艳, 等. 紫外辐射诱导植物叶片DNA损伤敏感性差异[J]. 植物学报, 2007, 24(2):189-193. [25] López-Fernández MP, et al. Cellular and molecular aspects of quinoa leaf senescence [J]. Plant Sci, 2015, 238:178-187. [26] Wang SP, Zhang GS, Song QL, et al. Programmed cell death, antioxidant response and oxidative stress in wheat flag leaves induced by chemical hybridization agent SQ-1 [J]. Journal of Integrative Agriculture, 2016, 15(1):76-86. [27] Babula P, Vaverkova V, Poborilova Z, et al. Hytotoxic action of naphthoquinone juglone demonstrated on lettuce seedling roots [J]. Plant Physiology & Biochemistry, 2014, 84C:78-86. [28] Ning SB, Wang L. ELISA assay for detection of Apoptosis in plant cell [J]. Developmental & Reproductive Biology, 2000:61-68. [29] Tulliicristiane F, Miguelemilio C, Limanathália B, et al. Characteri-zation of stipular colleters of a lseis pickelii [J]. Botany-botani-que, 2013, 91(6):403-413. [30] Hsu HY, Tsang SF, Lin KW, et al. Cell death induced by flavonoid glycosides with and without copper [J]. Food Chem Toxicol, 2008, 46(7):2394-2401. [31] Yang L, Zhao X, Zhu H, et al. Exogenous trehalose largely alleviates ionic unbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedlings [J]. Frontiers in Plant Science, 2014, 5(570):570-570. [32] Lord CE, Dauphinee AN, Watts RL. et al. Unveiling Interactions among mitochondria, caspase-like proteases and the actin cytoskeleton during plant programmed cell death(PCD)[J]. PLoS One, 2013, 8(3):134-134. [33] Han JJ, Lin W, Oda Y, et al. The proteasome is responsible for caspase-3-like activity during xylem development [J]. Plant Journal for Cell & Molecular Biology, 2012, 72(1):129-141. [34] Ma HY, Xiao J, Yang HQ. Study on root mitochondrial characteri-stics and root cell death of Malus hupehensis Rehd. under water stress[J] . Acta Horticulturae Sinica, 2007, 5:549-554. [35] 谭冬梅, 许雪峰, 李天忠, 等. 干旱胁迫诱导苹果属植物细胞程序性死亡的研究[J]. 园艺学报, 2007, 34(2):275-278. [36] 徐其现, 高彩吉, 邢达. FRET技术检测植物类caspase-3蛋白酶活性的质粒构建及其瞬时表达[J]. 激光生物学报, 2009, 18(5):604-608. [37] Zhang YH,Wu YL, Tashiro SI, et al. Reactive oxygen species contribute to oridonin-induced apoptosis and autophagy in human cervical carcinoma HeLa cells [J]. Acta Pharmacologica Sinica, 2011, 32(10):1266-1275. [38] Li Z, Xing D. Mechanistic study of mitochondria-dependent programmed cell death induced by aluminium phytotoxicity using fluorescence techniques [J]. J Exp Bot, 2011, 62(1):331-343. [39] Díaz-Tielas C , Graña E, Sotelo T, et al. The natural compound trans-chalcone induces programmed cell death in Arabidopsis thaliana roots [J]. Plant Cell Environ, 2012, 8:1500-1517. [40] Andronis EA, et al. Short-term salinity stress in tobacco plants leads to the onset of animal-like PCD hallmarks in planta in contrast to long-term stress [J]. Planta, 2010, 2:437-448. [41] Huang WJ, Oo T L, He HY, et al. Aluminum induces rapidly mitochondria-dependent programmed cell death in Al-sensitive peanut root tips [J]. Botanical Studies, 2014, 55(1):1-12. [42] 孙英丽, 赵允. 细胞色素c能诱导植物细胞编程性死亡[J]. 植物学报, 1999, 41(4):379-383. [43] 马岩岩, 张军, 陈娇, 等. 柑橘半胱氨酸蛋白酶基因CsCysP的分离、亚细胞定位及表达分析[J]. 园艺学报, 2014, 41(4):621-630. [44] Vailleau F, Daniel X, Tronchet M, et al. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack [J]. Proc Nati Acad Sci, 2002, 99(15):10179-1084. [45] Wang X, et al. TaDAD2, a negative regulator of programmed cell death, is important for the interaction between wheat and the stripe rust fungus [J]. Mol Plant Microbe Interact, 2011, 1:79-90. [46] Li G, Zhong Y, Shen Q, et al. An improved double-staining fluorescence assay for early apoptosis detection by flow cytometry [J]. Research Journal of Biotechnology, 2015, 10(6):83-90. [47] Yu S, Deng G, Qian DL, et al. Detection of apoptosis-associated microRNA in human apheresis platelets during storage by quantitative real-time polymerase chain reaction analysis [J]. Blood transfusion = Trasfusione del Sangue, 2014, 12(4):541-547. [48] Meehan TL, Yalonetskaya A, Joudi TF, et al. Detection of cell death and phagocytosis in the Drosophila, Ovary [J]. Methods in Molecular Biology, 2015, 1328:191-206. [49] Saito A, Mekawy MM, Sumiyoshi A, et al. Noninvasive targeting delivery and in vivo magnetic resonance tracking method for live apoptotic cells in cerebral ischemia with functional Fe 2 O 3 , magnetic nanoparticles [J]. Journal of Nanobiotechnology, 2016, 14(1):1-11. |
[1] | MA Yu-jing, DUAN Chun-hui, HE Ming-yang, ZHANG Ying-jie, YANG Ruo-chen, WANG Yong, LIU Yue-qin. Effects of Knockout of G0S2 Gene in Ovarian Granulosa Cell Proliferation, Steroids Hormones and Related Gene Expression [J]. Biotechnology Bulletin, 2023, 39(6): 325-334. |
[2] | HU Li-li, LIN Bo-rong, WANG Hong-hong, CHEN Jian-song, LIAO Jin-ling, ZHUO Kan. Transcriptome and Candidate Effectors Analysis of Pratylenchus brachyurus [J]. Biotechnology Bulletin, 2023, 39(3): 254-266. |
[3] | SU Yu, LI Zong-yun, HAN Yong-hua. Advances in Plant Vacuolar Processing Enzymes [J]. Biotechnology Bulletin, 2021, 37(6): 181-191. |
[4] | MO Li-jie, LIU Xia-tong, LI Hui, LU Hai. On the Function of Plant Cysteine Protease in Plant Growth and Development [J]. Biotechnology Bulletin, 2021, 37(6): 202-212. |
[5] | YIN Xiao-meng, CAO Xue-wei, WANG Fu-jun, ZHAO Jian, ZHANG Hui-zhan. Celastrol and Apoptin Mutant Exert Synergistic Anti-tumor Effects by Enhancing Nur77-induced Apoptosis Pathway [J]. Biotechnology Bulletin, 2020, 36(7): 119-129. |
[6] | ZOU Kun, LU Li-li, Collins Asiamah Amponsah, XUE Yuan, ZHANG Shao-wei, SU Ying, ZHAO Zhi-hui. Research Progress on Mechanism of Poultry Follicular Atresia [J]. Biotechnology Bulletin, 2020, 36(4): 185-191. |
[7] | ZHANG Chen, LEI Zhan, LI Kai, SHANG Ying, XU Wen-tao. Research Progress on Off-target Effects and Detection Techniques in CRISPR/Cas9 Systems [J]. Biotechnology Bulletin, 2020, 36(3): 78-87. |
[8] | ZHU Ping, DU Li-jie, MENG Kun, XUE Juan, YANG Jin, LI Shan. Research Progress on the Effects of T3SS Effectors on Apoptosis and Pyroptosis of Host Cells [J]. Biotechnology Bulletin, 2019, 35(4): 178-187. |
[9] | LI Zi-wei, DENG Zhong-liang. Application of a Loop-mediated Isothermal Amplification Method for Rapid Diagnosis of Francisella tularensis [J]. Biotechnology Bulletin, 2019, 35(2): 212-217. |
[10] | HU Jian-ran, LI Ping, TIE Jun, JIN Shan. Study on Antioxidant and Antitumor Activity of Essential Oil from Flowers of Syringa oblata [J]. Biotechnology Bulletin, 2019, 35(12): 16-23. |
[11] | LI Yan-wei, SONG Xing-hui, WANG Jia-jia, LIU Li, HUANG Ying-ying, GUO Chun. Establishment of the Real-time and Label-free Screening System for Tumor Cell Apoptosis [J]. Biotechnology Bulletin, 2019, 35(10): 220-226. |
[12] | LIU Hui, DENG Zhi, YANG Hong, DAI Long-jun, LI De-jun. Expression and Stress Tolerance Analysis of HbMC2 Gene from Hevea brasliensis in Yeast [J]. Biotechnology Bulletin, 2018, 34(9): 202-208. |
[13] | WANG Dan-dan, CHI Chun-ning, BAI Jing, CHEN Chong, CHI Chun-yu, DING Guo-hua. Expression Analysis of Mitochondria-related Genes During PCD Induced by Salicylic Acid and Downy Mildew in Cucumber [J]. Biotechnology Bulletin, 2018, 34(7): 85-91. |
[14] | ZHAI Yi-zhou ,LU Mei-ya ,ZHAO Jian ,WANG Fu-jun. Screening of a Gelonin Fusion Protein with High Cell-penetrating Efficiency and Its Anti-tumor Activity and Apoptosis Pathway [J]. Biotechnology Bulletin, 2018, 34(6): 204-212. |
[15] | GUO Hong-yan, GAO Han, WU Qi, SUN Xiao-jie, LIU Xiu-cai, ZHAO Li-qun. Construction of SGK3 Gene Lentiviral RNA Interference Vector and Effects on Cell proliferation and Apoptosis of Breast Cancer Cell Line MB-474 [J]. Biotechnology Bulletin, 2018, 34(1): 247-252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||