Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (4): 38-43.doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.005
• Orignal Article • Previous Articles Next Articles
HE Hu-yi, TAN Guan-ning, TANG Zhou-ping, YANG Xin, LI Li-shu, HE Xin-min
Received:
2016-10-24
Online:
2017-04-25
Published:
2017-04-25
HE Hu-yi, TAN Guan-ning, TANG Zhou-ping, YANG Xin, LI Li-shu, HE Xin-min. Plant Transposon and Gene Expression Regulation[J]. Biotechnology Bulletin, 2017, 33(4): 38-43.
[1] McClintock B. The origin and behavior of mutable loci in maize[J]. Proc Natl Acad Sci USA, 1950, 36:344-355. [2] 姚新灵, 白桦. 玉米转座子、GBSSI基因及表达研究进展[J]. 生物技术, 2000, 10(4):36-39. [3] 赵美霞, 张彪, 刘胜毅, 等. 白菜和甘蓝基因组转座子表达及其对基因调控的潜在影响[J]. 遗传, 2013, 35(8):1014-1022. [4] Bureau TE, Wessler SR. Tourist:a large family of small inverted repeat elements frequently associated with maize genes[J]. Plant Cell, 1992, 4(10):1283-1294. [5] 温小杰, 张学勇, 郝晨阳, 等. MITE转座元件在植物中的研究进展[J]. 中国农业科学, 2008, 41(8):2219-2226. [6] 李宏, 黄晓天. 高等植物转座子的超家族及其应用[J]. 亚热带植物科学, 2010, 39(3):93-96. [7] 高东迎, 何冰, 孙立华. 水稻转座子研究进展[J]. 植物学通报, 2007, 24(5):667-676 [8] Chen J, Hu Q, Zhang Y, et al. P-MITE:a database for plant miniature inverted-repeat transposable elements[J]. Nucleic Acids Res, 2014, 42:D1176-D1181. [9] Wang X, Weigel D, Smith LM. Transposon variants and their effects on gene expression in Arabidopsis[J]. PLoS Genetics, 2013, 9(2):e1003255 [10] Momose M, Abe Y, Ozeki Y. Miniature inverted-repeat transposable elements of Stowaway are active in potato[J]. Genetics, 2010, 186:59-66. [11] 许莹修, 杜建厂. 马铃薯(Solanum tuberosum L. )全基因组水平上LTR-逆转座子的鉴定与进化分析[J]. 基因组学与应用生物学, 2013, 32(6):734-742. [12] 李智菲, 李卫涛, 押辉远. 马铃薯全基因组LTR反转录转座子分析[J]. 湖北农业科学, 2013, 52(17):4235-4237. [13] Wang W, Feng B, Xiao J, et al. Cassava genome from a wild ance-stor to cultivated varieties[J]. Nature Communications, 2014, 5:5110. [14] Shirasawa K, Hirakawa H, Tabata S, et al. Characterization of active miniature inverted-repeat transposable elements in the peanut genome[J]. Theor Appl Genet, 2012, 124:1429-1438. [15] Bertioli DJ, Cannon SB, Froenicke L, et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut[J]. Nature Genetics, 2016, 48(4):436-446. [16] Sveinsson S, Gill N, Kane NC, et al. Transposon fingerprinting using low coverage whole genome shotgun sequencing in Cacao(Theobroma cacao L. )and related species[J]. BMC Genomics, 2013, 14:502. [17] D’Hont A, Denoeud F, Aury JM, et al. The banana(Musa acuminata)genome and the evolution of monocotyledonous plants. Nature, 2012, 488:213-219 [18] Du J, Grant D, Tian Z, et al. SoyTEdb:A comprehensive database of transposable elements in the soybean genome[J]. BioMed Central Genomics, 2010, 11:113 [19] 李宏. 转座子的起源及其和物种进化的关系[J]. 渝州大学学报, 1993, 25(1):47-56. [20] Mirouze M, Reinders J, Bucher E, et al. Selective epigenetic control of retrotransposition in Arabidopsis[J]. Nature, 2009, 461(7262):427-430. [21] Bucher E, Reinders J, Mirouze M. Epigenetic control of transposon transcription and mobility in Arabidopsis[J]. Curr Opin Plant Biol, 2012, 15(5):503-510. [22] 梁楠松, 曾凡锁, 李博, 等. 硝普钠(SNP)和茉莉酸甲酯(MeJA)诱导的白桦Ty1-copia类转座子的克隆及分析[J]. 东北林业大学学报, 2013, 41(10):69-74. [23] 蒋爽, 滕文元, 宗宇, 等. 植物LTR反转录转座子的研究进展[J]. 西北植物学报, 2013, 33(11):2354-2360. [24] Martinez G, Slotkin RK. Developmental relaxation of transposable element silencing in plants:functional or byproduct?[J]. Curr Opin Plant Biol, 2012, 15(5):496-502. [25] Sienski G, Donertas D, Brennecke J. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression[J]. Cell, 2012, 151(1):964-980. [26] Rebollo R, Romanish MT, Mager DL. Transposable elements:an abundant and natural source of regulatory sequences for host genes[J]. Annu Rev Genet, 2012, 46:21-42. [27] Kobayashi S, Goto-Yamamoto N, Hirochika H. Retrotransposon-induced mutations in grape skin color[J]. Science, 2004, 304(5673):982. [28] 押辉远, 谷运红, 王卫东, 等. 低能N + 辐照提高小麦反转录转座子Wis2-1A的转录并影响其邻近基因表达[J]. 核农学报, 2008, 22(5):595-599. [29] Han X, Ning J, Erin S, et al. Retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit[J]. Science, 2008, 319:1527-1530. [30] Butelli E, Licciardello C, Zhang Y, et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood organges[J]. Plant Cell, 2012, 24(3):1242-1255. [31] Yang G, Dong J, Chandrasekharan MB, et al. Kiddo, a new transposable element family closely associated with rice genes[J]. Mol Genet Genomics, 2001, 266(3):417-424. [32] Yang GJ, Lee YH, Jiang YM, et al. A two-edged role for the transposable element kiddo in the rice ubiquitin2 promoter[J]. Plant Cell, 2005, 17(5):1559-1568. [33] El Amrani, Marie L, Ainouche A, et al. Genome-wide distribution and potential regularoty functions of AtATE, a novel family of miniature inverted-repeat transposable elements in Arabidopsis thaliana[J]. Mol Genet Genomics, 2002, 267:459-471. [34] Iwamoto M, Higo K. Tourist C transposable elements are closely associated with genes expressed in flowers of rice(Oryza sativa)[J]. Mol Genet Genomics, 2003, 268:771-778. [35] Suprunova T, Krugman T, Distelfeld A, et al. Identification of a novel gene(Hsdr4)involved in water-stress tolerance in wild barley[J]. Plant Mol Biol, 2007, 64:17-34. [36] Tu Z. Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti[J]. Proc Natl Acad Sci USA, 1997, 94(14):7475-7480. [37] Danilevskaya ON, Hermon P, Hantke S, et al. Duplicated fie genes in maize:expression pattern and imprinting suggest distinct functions[J]. Plant Cell, 2003, 15:425-438. [38] Patel M, Jung S, Moore K, et al. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene[J]. Theor App Genet, 2004, 108(8):1492-1502. [39] Tovkach A, Ryan PR, Richardson AE, et al. Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices[J]. Plant Physiol, 2013, 161:880-892. [40] Li JT, Wang ZZ, Peng HR, et al. A MITE insertion into the 3’-UTR regulates the transcription of TaHSP16. 9 in common wheat[J]. The Crop J, 2014, 2(6):381-387. [41] 李静婷, 王健胜, 杨风岭. 小麦MITE转座子对sHSP基因的表达调控研究[J]. 江苏农业科学, 2015, 43(12):29-32. [42] Guillet-Claude C, Birolleau-Touchard C, Manicacci D, et al. Nucleotide diversity of the Zmpox3 maize peroxidase gene:relationships between a MITE insertion in exon 2 and variation in forage maize digestibility[J]. Biomed Centr Genet, 2004, 5(19):1-11. [43] Magalhaes JV, Liu J, Guimaraes CT, et al. A gene in the multidrug and toxic compound extrusion(MATE)family confers aluminum tolerance in sorghum[J]. Nature Gene, 2007, 39(9):1156-1161. [44] Hou J, Long Y, Raman H, et al. A tourist-like MITE insertion in the upstream region of the BnFLC. A10 gene is associated with vernalization requirement in rapeseed(Brassica napus L. )[J]. BMC Plant Biol, 2012, 12(1):238-250. [45] Kikuchi K, Terauchi K, Wada M, et al. The plant MITE mPING is mobilized in anther culture[J]. Nature, 2003, 421:167-170. [46] Wang X, Weigel D, Smith LM. Transposon variants and their effects on gene expression in Arabidopsis[J]. PLoS Genet, 2013, 9(2):e1003255. [47] Nair AS, Teo CH, Schwarzacher T, et al. Genome classification of banana cultivars from South India using IRAP markers[J]. Euphytica, 2005, 144:285-290. [48] Branco CJS, Vieira EA, Malone G, et al. IRAP and REMAP assessments of genetic similarity in rice[J]. J Appl Genet, 2007, 48(2):107-113. [49] Hashida SN, Uchiyama T, Martin C, et al. The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase[J]. Plant Cell, 2006, 18:104-118. [50] 刘振, 徐建红. 高通量测序技术在转座子研究中的应用[J]. 遗传, 2015, 37(9):885-898. |
[1] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[2] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
[3] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[4] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[5] | LAI Rui-lian, FENG Xin, GAO Min-xia, LU Yu-dan, LIU Xiao-chi, WU Ru-jian, CHEN Yi-ting. Genome-wide Identification of Catalase Family Genes and Expression Analysis in Kiwifruit [J]. Biotechnology Bulletin, 2023, 39(4): 136-147. |
[6] | GUO San-bao, SONG Mei-ling, LI Ling-xin, YAO Zi-zhao, GUI Ming-ming, HUANG Sheng-he. Cloning and Analysis of Chalcone Synthase Gene and Its Promoter from Euphorbia maculata [J]. Biotechnology Bulletin, 2023, 39(4): 148-156. |
[7] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[8] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[9] | LI Yan-xia, WANG Jin-peng, FENG Fen, BAO Bin-wu, DONG Yi-wen, WANG Xing-ping, LUORENG Zhuo-ma. Effects of Escherichia coli Dairy Cow Mastitis on the Expressions of Milk-producing Trait Related Genes [J]. Biotechnology Bulletin, 2023, 39(2): 274-282. |
[10] | FENG Ce-ting, JIANG Lyu, LIU Xing-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 283-296. |
[11] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[12] | DUAN Min-jie, LI Yi-fei, YANG Xiao-miao, WANG Chun-ping, HUANG Qi-zhong, HUANG Ren-zhong, ZHANG Shi-cai. Identification of Zinc Finger Protein DnaJ-Like Gene Family in Capsicum annuum and Its Expression Analysis Responses to High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(1): 187-198. |
[13] | YUAN Xing, GUO Cai-hua, LIU Jin-ming, KANG Chao, QUAN Shao-wen, NIU Jian-xin. Genome-wide Identification of CONSTANS-Like Family Genes and Expression Analysis in Wanlut [J]. Biotechnology Bulletin, 2022, 38(9): 167-179. |
[14] | GUO Bin-hui, SONG Li. Transcription of Ethylene Biosynthesis and Signaling Associated Genes in Response to Heterodera glycine Infection [J]. Biotechnology Bulletin, 2022, 38(8): 150-158. |
[15] | ZHANG Miao, YANG Lu-lu, JIA Yan-long, WANG Tian-yun. Research Progress in the Roles of DNA and Histone Methylations in Epigenetic Regulation [J]. Biotechnology Bulletin, 2022, 38(7): 23-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||