Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (4): 8-18.doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.002
• Orignal Article • Previous Articles Next Articles
ZHOU Wen-fei, BAI Juan ,GONG Chun-mei
Received:
2016-09-16
Online:
2017-04-25
Published:
2017-04-25
ZHOU Wen-fei, BAI Juan ,GONG Chun-mei. Research Progress on the Oxidative Modification of Plant Proteins Mediated by Reactive Oxygen Species[J]. Biotechnology Bulletin, 2017, 33(4): 8-18.
[1] 刘金凤, 王京兰, 钱小红, 等. 翻译后修饰蛋白质组学研究的技术策略[J]. 中国生物化学与分子生物学报, 2007, 23(2):93-100. [2] Mann M, Jensen ON. Proteomic analysis of post-translational modifications[J]. Nature Biotechnology, 2003, 21(3):255-261. [3] Kalume DE, Molina H, Pandey A. Tackling the phosphoproteome:tools and strategies[J]. Current Opinion in Chemical Biology, 2003, 7(1):64-69. [4] 宋博研, 朱卫国. 组蛋白甲基化修饰效应分子的研究进展[J]. 遗传, 2011, 33(4):285-292. [5] Møller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants[J]. Annual Review of Plant Biology, 2007, 58:459-481. [6] 丁海东, 刘慧, 朱晓红, 等. 植物细胞蛋白质氧化及其蛋白质组学研究进展[J]. 中国农学通报, 2011, 27(33):187-193. [7] Waszczak C, Akter S, Eeckhout D, et al. Sulfenome mining in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 2014, 111(31):11545-11550. [8] Ghesquière B, Gevaert K. Proteomics methods to study methionine oxidation[J]. Mass Spectrometry Reviews, 2014, 33(2):147-156. [9] Gupta V, Carroll KS. Sulfenic acid chemistry, detection and cellular lifetime[J]. Biochimica et Biophysica Acta(BBA)-General Subjects, 2014, 1840(2):847-875. [10] Pan J, Carroll KS. Chemical biology approaches to study protein cysteine sulfenylation[J]. Biopolymers, 2014, 101(2):165-172. [11] Jacques S, Ghesquière B, De Bock PJ, et al. Protein methionine sulfoxide dynamics in Arabidopsis thaliana under oxidative stress [J]. Molecular & Cellular Proteomics, 2015, 14(5):1217-1229. [12] 张佳娣. 活性氧的信号传导途径[J]. 安徽农业科学, 2010, 38(16):8283-8285. [13] Noctor G, Mhamdi A, Foyer CH. Oxidative stress and antioxidative systems:recipes for successful data collection and interpretation[J]. Plant, Cell & Environment, 2016, 66(10):1140-1160. [14] Rinalducci S, Murgiano L, Zolla L. Redox proteomics:basic principles and future perspectives for the detection of protein oxidation in plants[J]. Journal of Experimental Botany, 2008, 59(14):3781-3801. [15] Navrot N, Finnie C, Svensson B, et al. Plant redox proteomics[J]. Journal of Proteomics, 2011, 74(8):1450-1462. [16] 付强, 邹颉, 赵杰宏, 等. 植物氧化还原蛋白质组学的研究进展[J]. 贵州农业科学, 2013, 41(12):17-20. [17] Weissbach H, Resnick L, Brot N. Methionine sulfoxide reductases:history and cellular role in protecting against oxidative damage[J]. Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics, 2005, 1703(2):203-212. [18] Ghezzi P, Bonetto V. Redox proteomics:identification of oxidatively modified proteins[J]. Proteomics, 2003, 3(7):1145-1153. [19] Couturier J, Chibani K, Jacquot JP, et al. Cysteine-based redox regulation and signaling in plants[J]. Frontiers in Plant Science, 2013, 4:105. [20] Liebster J, Kopoldova J. The radication chemistry of amino acids[J]. Advances in Radiation Biology, 2013, 1:157. [21] 李冰冰, 赵倩, 张龙富. 活性氧与蛋白质氧化损伤[J]. 平顶山工学院学报, 2005, 14(5):16-17. [22] Aulak KS, Miyagi M, Yan L, et al. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge[J]. Proceedings of the National Academy of Sciences, 2001, 98(21):12056-12061. [23] Kanski J, Hong SJ, Schöneich C. Proteomic analysis of protein nitration in aging skeletal muscle and identification of nitrotyrosine-containing sequences in vivo by nanoelectrospray ionization tandem mass spectrometry[J]. Journal of Biological Chemistry, 2005, 280(25):24261-24266. [24] Friso G, van Wijk KJ. Posttranslational protein modifications in plant metabolism[J]. Plant Physiology, 2015, 169(3):1469-1487. [25] Rao RSP, Møller IM, Thelen JJ, et al. Convergent signaling pathways interaction between methionine oxidation and serine/threonine/tyrosine O-phosphorylation[J]. Cell Stress & Chaperones, 2015, 20(1):15-21. [26] 黄舒, 李刚, 朱建堂, 等. 植物Msr(methionine sulfoxide redu-ctase)基因家族的研究进展[J]. 生命的化学, 2015, 35(3):313-319. [27] 王海波, 邹竹荣, 龚明. 小桐子甲硫氨酸亚砜还原酶A的基因克隆及生物信息学分析[J]. 基因组学与应用生物学, 2015, 34(4):821-829. [28] Drazic A, Winter J. The physiological role of reversible methionine oxidation[J]. Biochimica et Biophysica Acta, 2014, 1844(8):1367-1382. [29] Muthuramalingam M, Matros A, Scheibe R, et al. The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo[J]. Frontiers in Plant Science, 2013, 4:54. [30] Kim HY, Fomenko DE, Yoon YE, et al. Catalytic advantages provided by selenocysteine in methionine-S-sulfoxide reductases[J]. Biochemistry, 2006, 45(46):13697-13704. [31] Tarrago L, Laugier E, Rey P. Protein-repairing methionine sulfoxide reductases in photosynthetic organisms:gene organization, reduction mechanisms, and physiological roles[J]. Molecular Plant, 2009, 2(2):202-217. [32] Lee BC, Dikiy A, Kim HY, et al. Functions and evolution of selenoprotein methionine sulfoxide reductases[J]. Biochimica et Biophysica Acta(BBA)-General Subjects, 2009, 1790(11):1471-1477. [33] Stamler JS. Redox signaling:nitrosylation and related target interactions of nitric oxide[J]. Cell, 1994, 78(6):931-936. [34] Perissinotti LL, Turjanski AG, Estrin DA, et al. Transnitrosation of nitrosothiols:characterization of an elusive intermediate[J]. Journal of the American Chemical Society, 2005, 127(2):486-487. [35] 陈畅, 黄波, 韩佩韦, 等. 蛋白质巯基亚硝基化——一种典型氧化还原依赖的蛋白质翻译后修饰[J]. 生物化学与生物物理进展, 2006, 33(7):609-615. [36] 黄楚森, 朱维平, 徐玉芳, 等. 蛋白质巯基及其氧化性修饰的化学检测方法[J]. 药学学报, 2012, 47(3):280-290. [37] 黄波, 陈畅. 一氧化氮的功能及其作用机制(Ⅱ)——蛋白质巯基亚硝基化修饰[J]. 生物物理学报, 2012, 28(4):268-277. [38] Xu L, Eu JP, Meissner G, et al. Activation of the cardiac calcium release channel(ryanodine receptor)by poly-S-nitrosylation[J]. Science, 1998, 279(5348):234-237. [39] 梁颖, 李玉花. 植物中磷酸甘油醛-3-磷酸脱氢酶(GAPDH)在氧化胁迫下的生理功能[J]. 植物生理学通讯, 2009, 45(10):1027-1032. [40] Hamnell-Pamment Y, Lind C, Palmberg C, et al. Determination of site-specificity of S-glutathionylated cellular proteins[J]. Biochemical and Biophysical Research Communications, 2005, 332(2):362-369. [41] 邹朝霞, 周宏博, 高旭. 谷胱甘肽化修饰与氧化还原信号转导[J]. 生命的化学, 2007, 27(5):410-413. [42] Sevilla F, Camejo D, Ortiz-Espín A, et al. The thioredoxin/peroxiredoxin/sulfiredoxin system:current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species[J]. Journal of Experimental Botany, 2015, 66(10):2945-2955. [43] Biteau B, Labarre J, Toledano MB. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin[J]. Nature, 2003, 425(6961):980-984. [44] 李奎, 白洁. 硫氧还蛋白的共价修饰[J]. 生命的化学, 2010, 30(1):54-58. [45] 王珊, 王辉, 陈小燕. 硫氧还蛋白-过氧化物氧还蛋白与过氧化氢构成环路参与肿瘤的发生与发展[J]. 中国生物化学与分子生物学报, 2015, 31(4):360-366. [46] 郑琼, 马旭俊, 杨传平. 硫氧还蛋白(Trx)的研究进展[J]. 分子植物育种, 2006, 4(6S):78-82. [47] Lee K, Lee J, Kim Y, et al. Defining the plant disulfide proteome[J]. Electrophoresis, 2004, 25(3):532-541. [48] Yano H, Wong JH, Lee YM, et al. A strategy for the identification of proteins targeted by thioredoxin[J]. Proceedings of the National Academy of Sciences, 2001, 98(8):4794-4799. [49] Le Moan N, Clement G, Le Maout S, et al. The Saccharomyces cerevisiae proteome of oxidized protein thiols contrasted functions for the thioredoxin and glutathione pathways[J]. Journal of Biological Chemistry, 2006, 281(15):10420-10430. [50] Allen EMG, Mieyal JJ. Protein-thiol oxidation and cell death:regulatory role of glutaredoxins[J]. Antioxidants & Redox Signaling, 2012, 17(12):1748-1763. [51] Kim G, Weiss SJ, Levine RL. Methionine oxidation and reduction in proteins[J]. Biochimica et Biophysica Acta(BBA)-General Subjects, 2014, 1840(2):901-905. [52] Valley CC, Cembran A, Perlmutter JD, et al. The methionine-aromatic motif plays a unique role in stabilizing protein structure[J]. Journal of Biological Chemistry, 2012, 287(42):34979-34991. [53] Gustavsson N, Kokke B, Härndahl U, et al. A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein[J]. The Plant Journal, 2002, 29(5):545-553. [54] Bechtold U, Murphy DJ, Mullineaux PM. Arabidopsis peptide methionine sulfoxide reductase2 prevents cellular oxidative damage in long nights[J]. The Plant Cell, 2004, 16(4):908-919. [55] Li CW, Lee SH, Chieh PS, et al. Arabidopsis root-abundant cytosolic methionine sulfoxide reductase B genes MsrB7 and MsrB8 are involved in tolerance to oxidtive stress[J]. Plant and Cell Physiology, 2012, 53(10):1707-1719. [56] Hrabak EM, Chan CWM, Gribskov M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiology, 2003, 132(2):666-680. [57] Tarafdar S, Rusan NM, Levine RL. Site specific oxidation of calm-odulin by methionine sulfoxide reductase a in Drosophila[J]. The FASEB Journal, 2016, 30(1 Supplement):652-654. [58] Hardin SC, Larue CT, Oh MH, et al. Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis [J]. Biochemical Journal, 2009, 422(2):305-312. [59] Ciorba MA, Heinemann SH, Weissbach H, et al. Regulation of voltage-dependent K + channels by methionine oxidation:effect of nitric oxide and vitamin C[J]. FEBS Letters, 1999, 442(1):48-52. [60] Erickson JR, Mei-Ling AJ, Guan X, et al. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation[J]. Cell, 2008, 133(3):462-474. [61] Liu XP, Liu XY, Zhang J, et al. Molecular and functional characterization of sulfiredoxin homologs from higher plants[J]. Cell Research, 2006, 16(3):287-296. [62] Cerveau D, Ouahrani D, Marok MA, et al. Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status[J]. Plant, Cell & Environment, 2016, 39(1):103-119. [63] Waszczak C, Akter S, Jacques S, et al. Oxidative post-translational modifications of cysteine residues in plant signal transduction[J]. Journal of Experimental Botany, 2015, 66(10):2923-2934. [64] Gupta R, Luan S. Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants[J]. Plant Physiology, 2003, 132(3):1149-1152. [65] Jacques S, Ghesquire B, Van Breusegem F, et al. Plant proteins under oxidative attack[J]. Proteomics, 2013, 13(6):932-940. [66] Walton A, Tsiatsiani L, Jacques S, et al. Diagonal chromatography to study plant protein modifications[J]. Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics, 2016, 1864(8):945-951. [67] Gevaert K, Van Damme J, Goethals M, et al. Chromatographic isolation of methionine-containing peptides for gel-free proteome analysis:identification of more than 800 Escherichia coli proteins[J]. Molecular & Cellular Proteomics, 2002, 1(11):896-903. [68] MacCoss MJ, McDonald WH, Saraf A, et al. Shotgun identification of protein modifications from protein complexes and lens tissue[J]. Proceedings of the National Academy of Sciences, 2002, 99(12):7900-7905. [69] Jaffrey SR, Erdjument-Bromage H, Ferris CD, et al. Protein S-nitrosylation:a physiological signal for neuronal nitric oxide[J]. Nature Cell Biology, 2001, 3(2):193-197. [70] Hao G, Derakhshan B, Shi L, et al. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures[J]. Proceedings of the National Academy of Sciences, 2006, 103(4):1012-1017. [71] Rhee KY, Erdjument-Bromage H, Tempst P, et al. S-nitroso proteome of Mycobacterium tuberculosis:Enzymes of intermediary metabolism and antioxidant defense[J]. Proceedings of the National Academy of Sciences, 2005, 102(2):467-472. [72] Cheng G, Ikeda Y, Iuchi Y, et al. Detection of S-glutathionylated proteins by glutathione S-transferase overlay[J]. Archives of Biochemistry and Biophysics, 2005, 435(1):42-49. [73] Klatt P, Molina EP, Pérez-Sala D, et al. Novel application of S-nitrosoglutathione-Sepharose to identify proteins that are potential targets for S-nitrosoglutathione-induced mixed-disulphide formation[J]. Biochemical Journal, 2000, 349(2):567-578. |
[1] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[2] | WANG Tao, QI Si-yu, WEI Chao-ling, WANG Yi-qing, DAI Hao-min, ZHOU Zhe, CAO Shi-xian, ZENG Wen, SUN Wei-jiang. Expression Analysis and Interaction Protein Validation of CsPPR and CsCPN60-like in Albino Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(3): 218-231. |
[3] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[4] | ZHANG Xiao-yan, YANG Shu-hua, DING Yang-lin. Molecular Mechanism of Cold Signal Perception and Transduction in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 28-35. |
[5] | ZHOU Heng, XIE Yan-jie. Recent Progress in Oxidative Stress Signaling and Response in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 36-43. |
[6] | YIN Guo-ying, LIU Chang, CHANG Yong-chun, YU Wang-jie, WANG Bing, ZHANG Pan, GUO Yu-shuang. Identification of the Cysteine Protease Family and Corresponding miRNAs in Nicotiana tabacum L. and Their Responses to PVY [J]. Biotechnology Bulletin, 2023, 39(10): 184-196. |
[7] | CAI Jia, LIANG Zhen-yu, HUANG Yu, LU Yi-shan, SHI gang, JIAN Ji-chang. Screening and Identifing the Interacting Proteins of Grouper(Epinephelus coioides)EcBAG3 Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2022, 38(8): 77-83. |
[8] | GU Pan, QI Xue-ying, LI Li, ZHANG Xi, SHAN Xiao-yi. Endocytosis of AtRGS1 Involved in the Regulation of G-protein-mediated Arabidopsis Development and Stress Responses [J]. Biotechnology Bulletin, 2022, 38(6): 34-42. |
[9] | REN Ying LIAN Tong ZHANG Chun-yi JIANG Ling. Gene Cloning and Expression Characteristics of Methionine Synthase METS in Maize [J]. Biotechnology Bulletin, 2022, 38(4): 79-85. |
[10] | LI Bing-juan, ZHENG Lu, SHEN Ren-fang, LAN Ping. Proteomic Analysis of RPP1A Involved in the Seedling Growth of Arabidopsis thaliana [J]. Biotechnology Bulletin, 2022, 38(2): 10-20. |
[11] | JIA Hai-hong, LI Bing-qing. Research Progress in the Post-translational Modification of Superoxide Dismutase [J]. Biotechnology Bulletin, 2022, 38(2): 237-244. |
[12] | SUN Bao-ting, QIU Meng-xia, WANG Zi-chen, WANG Zi-yuan, CUI Jian-dong, JIA Shi-ru. Preparation of @ZIF-8 Immobilized Enzyme by Using Cysteine as Auxiliary Reagent and Its Characterization [J]. Biotechnology Bulletin, 2021, 37(8): 221-232. |
[13] | HE Xiao-li, GUO Lei-zhou, HAN Jia-hui, TANG Yin, YUAN Yuan, DAI Qi-lin, PING Shu-zhen, JIANG Shi-jie. Research Progress on Bacterial Periplasmic Chaperone LolA [J]. Biotechnology Bulletin, 2021, 37(8): 275-283. |
[14] | SU Yu, LI Zong-yun, HAN Yong-hua. Advances in Plant Vacuolar Processing Enzymes [J]. Biotechnology Bulletin, 2021, 37(6): 181-191. |
[15] | MO Li-jie, LIU Xia-tong, LI Hui, LU Hai. On the Function of Plant Cysteine Protease in Plant Growth and Development [J]. Biotechnology Bulletin, 2021, 37(6): 202-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||