Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (6): 16-23.doi: 10.13560/j.cnki.biotech.bull.1985.2016-1158
Previous Articles Next Articles
GAN Mai-lin1, YANG Lu2, TAN Ya1, YANG Qiong3, PU Hong-zhou4, ZHANG Shun-hua1, ZHU Li1
Received:
2016-12-22
Online:
2017-06-26
Published:
2017-06-19
GAN Mai-lin, YANG Lu, TAN Ya, YANG Qiong, PU Hong-zhou, ZHANG Shun-hua, ZHU Li. Research Progress on miR-143’s Biological Function[J]. Biotechnology Bulletin, 2017, 33(6): 16-23.
[1] Ambros V. microRNAs:tiny regulators with great potential[J]. Cell, 2001, 107(7):823-826. [2] Pham JW, Pellino JL, Lee YS, et al. A Dicer-2-dependent 80S complex cleaves targeted mRNAs during RNAi in Drosophila[J]. Cell, 2004, 117(1):83-94. [3] Chen JF, Murchison EP, Tang R, et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6):2111-2116. [4] Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2[J]. Cell, 2007, 129(2):303-317. [5] Bhattachariya A, Dahan D, Ekman M, et al. Spontaneous activity and stretch-induced contractile differentiation are reduced in vascular smooth muscle of miR-143/145 knockout mice[J]. Acta Physiologica, 2015, 215(3):133-143. [6] Deacon DC, Nevis KR, Cashman TJ, et al. The miR-143-adducin3 pathway is essential for cardiac chamber morphogenesis[J]. Development, 2010, 137(11):1887-1896. [7] Miyasaka KY, Kida YS, Banjo T, et al. Heartbeat regulates cardiogenesis by suppressing retinoic acid signaling via expression of miR-143[J]. Mechanisms of Development, 2011, 128(1-2):18-28. [8] Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate decisions[J]. Nature, 2009, 460(7256):705-710. [9] Boettger T, Beetz N, Kostin S, et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster[J]. Journal of Clinical Investigation, 2009, 119(9):2634-2647. [10] Elia L, Quintavalle M, Zhang J, et al. The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice:correlates with human disease[J]. Cell Death & Differentiation, 2009, 16(12):1590-1598. [11] Xin M, Small EM, Sutherland LB, et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury[J]. Genes & Development, 2009, 23(18):2166-2178. [12] Pennisi E. Genomics. ENCODE project writes eulogy for junk DNA. [J]. Science, 2012, 337(6099):1159-1161. [13] Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation[J]. Journal of Biological Chemistry, 2004, 279(50):52361-52365. [14] Yi C, Xie WD, Li F, et al. MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin[J]. Febs Letters, 2011, 585(20):3303-3309. [15] Li G, Li Y, Li X, et al. MicroRNA identity and abundance in developing swine adipose tissue as determined by solexa sequencing[J]. Journal of Cellular Biochemistry, 2011, 112(5):1318-1328. [16] Takanabe R, Ono K, Abe Y, et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet[J]. Biochemical & Biophysical Research Communications, 2008, 376(4):728-732. [17] He Z, Yu J, Zhou C, et al. MiR-143 is not essential for adipose development as revealed by in vivo antisense targeting[J]. Biotechnology Letters, 2013, 35(4):499-507. [18] Xie H, Bing L, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity[J]. Diabetes, 2009, 58(5):1050-1057. [19] Wang T, Li M, Guan J, et al. MicroRNAs miR-27a and miR-143 regulate porcine adipocyte lipid metabolism[J]. International Journal of Molecular Sciences, 2011, 12(11):7950-7959. [20] Zhao S, Liu H, Liu Y, et al. miR-143 inhibits glycolysis and depletes stemness of glioblastoma stem-like cells[J]. Cancer Letters, 2013, 333(2):253-260. [21] Peschiaroli A, Giacobbe A, Formosa A, et al. miR-143 regulates hexokinase 2 expression in cancer cells. [J]. Oncogene, 2013, 32(6):797-802. [22] Nakashima K, Xin Z, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation[J]. Cell, 2002, 108(1):17-29. [23] Li E, Zhang J, Yuan T, et al. MiR-143 suppresses osteogenic differentiation by targeting Osterix[J]. Molecular & Cellular Biochemistry, 2014, 390(1-2):69-74. [24] Zuo J, Wu F, Liu Y, et al. MicroRNA transcriptome profile analysis in porcine muscle and the effect of miR-143 on the MYH7 gene and protein[J]. PLoS One, 2014, 10(4):1-21. [25] Chen L, Wu P, Guo XH, et al. miR-143:a novel regulator of MyoD expression in fast and slow muscles of Siniperca chuatsi[J]. Current Molecular Medicine, 2014, 14(3):370-375. [26] Li D, Deng T, Li H, et al. MiR-143 and miR-135 inhibitors treatment induces skeletal myogenic differentiation of human adult dental pulp stem cells[J]. Arch Oral Biol, 2015, 60(11):1613-1617. [27] Soriano-Arroquia A, Mccormick R, Molloy AP, et al. Age-related changes in miR-143-3p:Igfbp5 interactions affect muscle regeneration[J]. Aging Cell, 2016, 15(2):361-369. [28] Rani N, Nowakowski T, Zhou H, et al. A primate lncRNA mediates notch signaling during neuronal development by sequestering miRNA[J]. Neuron, 2016, 90(6):1174-1188. [29] Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse[J]. Current Biology Cb, 2002, 12(9):735-739. [30] Trakooljul N, Hicks JA, Liu HC. Identification of target genes and pathways associated with chicken microRNA miR-143[J]. Animal Genetics, 2010, 41(4):357-364. [31] Yuan Z, Kai S, Ying B, et al. Mir-143/BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy:Implications for methamphetamine-mediated neurotoxicity[J]. Autophagy, 2016:1-22. [32] Huang J, Ju Z, Li Q, et al. Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle[J]. International Journal of Biological Sciences, 2011, 7(7):1016-1026. [33] Zhang J, Ji X, Zhou D, et al. miR-143 is critical for the formation of primordial follicles in mice[J]. Frontiers in Bioscience, 2013, 18(2):588-597. [34] Shi T, Xing S, Lu Q, et al. MiR-143, and rat embryo implantation[J]. Biochimica et Biophysica Acta(BBA)-General Subjects, 2015, 1850(4):708-721. [35] Yu SQ, Zhang RX, Liu GJ, et al. Microarray analysis of differentially expressed microRNAs in allergic rhinitis[J]. American Journal of Rhinology & Allergy, 2011, 25(6):242-246. [36] Teng Y, Zhang R, Liu C, et al. miR-143 inhibits interleukin-13-induced inflammatory cytokine and mucus production in nasal epithelial cells from allergic rhinitis patients by targeting IL13Rα1[J]. Biochemical & Biophysical Research Communications, 2014, 457(1):58-64. [37] Tam TS, Bastian I, Zhou XF, et al. MicroRNA-143 expression in dorsal root ganglion neurons[J]. Cell & Tissue Research, 2011, 346(2):163-173. [38] Pekow JR, Dougherty U, Mustafi R, et al. miR-143 and miR-145 are downregulated in ulcerative colitis:Putative regulators of inflammation and protooncogenes[J]. Inflammatory Bowel Diseases, 2012, 18(1):94-100. [39] Chivukula R, Shi G, Acharya A, et al. An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration[J]. Cell, 2014, 157(5):1104-1116. [40] Xia X, Li Z, Liu K, et al. Staphylococcal LTA-induced miR-143 inhibits propionibacterium acnes-mediated inflammatory response in skin[J]. Journal of Investigative Dermatology, 2015, 136(3):621-630. [41] Xu P, Li Y, Yang S, et al. Micro-ribonucleic acid 143(MiR-143)inhibits oral squamous cell carcinoma(OSCC)cell migration and invasion by downregulation of phospho-c-Met through targeting CD44 v3[J]Oral Surg Oral Med Oral Pathol Oral Radiol, 2015, 120(1):43-51. [42] He Z, Yi J, Liu X, et al. MiR-143-3p functions as a tumor suppressor by regulating cell proliferation, invasion and epithelial-mesenchymal transition by targeting QKI-5 in esophageal squamous cell carcinoma[J]. Molecular Cancer, 2016, 15(1):1-17. [43] Jia L, Yu M, Zhang D, et al. MiR-143 inhibits tumor cell proliferation and invasion by targeting STAT3, in esophageal squamous cell carcinoma[J]. Cancer Letters, 2016, 373(1):97-108. [44] Zhuang M, Shi Q, Zhang X, et al. Involvement of miR-143 in cisplatin resistance of gastric cancer cells via targeting IGF1R and BCL2[J]. Tumour Biology the Journal of the International Society for Oncodevelopmental Biology & Medicine, 2015, 36(4):2737-2745. [45] Chen X, Guo X, Zhang H, et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis[J]. Oncogene, 2009, 28(10):1385-1392. [46] Borralho PM, Gomes S, Lima RT, et al. miR-143 over-expression reduces the growth of xenograft tumors from colon carcinoma cells[J]. Bmc Proceedings, 2010, 4(Suppl 2):59. [47] Akao Y, Nakagawa Y, Hirata I, et al. Role of anti-oncomirs miR-143 and -145 in human colorectal tumors[J]. Cancer Gene Therapy, 2010, 17(6):398-408. [48] Su J, Liang H, Yao W, et al. MiR-143 and MiR-145 regulate IGF1R to suppress cell proliferation in colorectal cancer[J]. PLoS One, 2014, 9(12):e114420-e114420. [49] Liu X, Gong J, Xu B. miR-143 down-regulates TLR2 expression in hepatoma cells and inhibits hepatoma cell proliferation and invasion[J]. International Journal of Clinical & Experimental Pathology, 2015, 8(10):12738-12747. [50] Pham H. miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells[J]. Biochemical & Biophysical Research Communications, 2013, 439(1):6-11. [51] Hu Y, Ou Y, Wu K, et al. miR-143 inhibits the metastasis of pancreatic cancer and an associated signaling pathway[J]. Tumor Biology, 2012, 33(6):1863-1870. [52] Yan X, Chen X, Liang H, et al. miR-143 and miR-145 synergistically regulate ERBB3 to suppress cell proliferation and invasion in breast cancer[J]. Molecular Cancer, 2014, 13(1):126-136. [53] Clape C, Fritz V, Henriquet C, et al. miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice[J]. PLoS One, 2009, 4(10):e7542. [54] Xu B, Niu X, Zhang X, et al. miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS[J]. Molecular & Cellular Biochemistry, 2011, 350(1-2):207-213. [55] Chu HY, Zhong DY, Tang JL, et al. A functional variant in miR-143 promoter contributes to prostate cancer risk[J]. Archives of Toxicology, 2014, 90(2):403-414. [56] Zhang XM, Dong Y, Ti HJ, et al. Down-regulation of miR-145 and miR-143 might be associated with DNA methyltransferase 3B overexpression and worse prognosis in endometrioid carcinomas[J]. Human Pathology, 2013, 44(11):2571-2580. [57] Chen Y, Ma C, Zhang W, et al. Down regulation of miR-143 is related with tumor size, lymph node metastasis and HPV16 infection in cervical squamous cancer[J]. Diagnostic Pathology, 2014, 9(6):901-906. [58] Almeida MI, Calin GA. The miR-143/miR-145 cluster and the tumor microenvironment:unexpected roles[J]. Genome Medicine, 2016, 8(1):1-3. [59] Puerta-Gil P, García-Baquero R, Jia AY, et al. miR-143, miR-222, and miR-452 are useful as tumor stratification and noninvasive diagnostic biomarkers for bladder cancer[J]. American Journal of Pathology, 2012, 180(5):1808-1815. [60] Xu YF, Li YQ, Guo R, et al. Identification of miR-143 as a tumour suppressor in nasopharyngeal carcinoma based on microRNA expression profiling[J]. International Journal of Biochemistry & Cell Biology, 2015, 61:120-128. [61] Zhang N, Su Y, Xu L. Targeting PKCε by miR-143 regulates cell apoptosis in lung cancer[J]. Febs Letters, 2013, 587(22):3661-3667. [62] Wang Q, Cai J, Wang J, et al. MiR-143 inhibits EGFR-signaling-dependent osteosarcoma invasion[J]. Tumour Biology the Journal of the International Society for Oncodevelopmental Biology & Medicine, 2014, 35(12):12743-12748. [63] Liu J, Qu CB, Xue YX, et al. MiR-143 enhances the antitumor activity of shikonin by targeting BAG3 expression in human glioblastoma stem cells[J]. Biochemical & Biophysical Research Communications, 2015, 468(1-2):105-112. |
[1] | CHU Rui, LI Zhao-xuan, ZHANG Xue-qing, YANG Dong-ya, CAO Hang-hang, ZHANG Xue-yan. Screening and Identification of Antagonistic Bacillus spp. Against Cucumber Fusarium wilt and Its Biocontrol Effect [J]. Biotechnology Bulletin, 2023, 39(8): 262-271. |
[2] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[3] | CHEN Cai-ping, REN Hao, LONG Teng-fei, HE Bing, LU Zhao-xiang, SUN Jian. Research Advances in the Treatment of Inflammation Bowel Disease Using Escherichia coli Nissle 1917 [J]. Biotechnology Bulletin, 2023, 39(6): 109-118. |
[4] | MA Xue-hu, MA Li-hua, GOU Yan, MA Yan-fen. Related Inflammatory Diseases Caused by Mitochondrial Dysfunction and Targeted Therapy to Them [J]. Biotechnology Bulletin, 2023, 39(6): 119-125. |
[5] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[6] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[7] | ZHANG Le-le, WANG Guan, LIU Feng, HU Han-qiao, REN Lei. Isolation, Identification and Biocontrol Mechanism of an Antagonistic Bacterium Against Anthracnose on Mango Caused by Colletotrichum gloeosporioides [J]. Biotechnology Bulletin, 2023, 39(4): 277-287. |
[8] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[9] | SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation [J]. Biotechnology Bulletin, 2023, 39(3): 1-12. |
[10] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[11] | AN Chang, LU Lin, SHEN Meng-qian, CHEN Sheng-zhen, YE Kang-zhuo, QIN Yuan, ZHENG Ping. Research Progress of bHLH Gene Family in Plants and Its Application Prospects in Medical Plants [J]. Biotechnology Bulletin, 2023, 39(10): 1-16. |
[12] | MA Sai-mai, LI Tong-yuan, MA Yan-jun, HAN Fu-jun, PENG Hai, KONG Wei-bao. Research Progress in Chitinase Involving in the Biocontrol of Crop Diseases and Pests [J]. Biotechnology Bulletin, 2023, 39(10): 29-40. |
[13] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[14] | ZHU Jin-cheng, YANG Yang, LOU Hui, ZHANG Wei. Regulation of Fusarium wilt Resistance in Cotton by Exogenous Melatonin [J]. Biotechnology Bulletin, 2023, 39(1): 243-252. |
[15] | TANG Qian-qian, LIN Chu-yu, TAO Zeng. Research Progress in Histone Demethylase in Plant [J]. Biotechnology Bulletin, 2022, 38(7): 13-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||