Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (9): 73-84.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0343
• CONTENTS • Previous Articles Next Articles
MU Yong-ying1,2,GU Pei-ming1,MA Bo1,YAN Wen-xiu1,WANG Dao-ping1,PAN Ying-hong1
Received:
2017-04-28
Online:
2017-09-01
Published:
2017-09-15
MU Yong-ying,GU Pei-ming,MA Bo,YAN Wen-xiu,WANG Dao-ping,PAN Ying-hong. Advancements in Quantitative Proteomics Technologies Based on Mass Spectrometry[J]. Biotechnology Bulletin, 2017, 33(9): 73-84.
[1] Adams MD, Celniker SE, Holt RA, et al. The genome sequence of Drosophila melanogaster[J] . Science, 2000, 287(5461):2185-2195. [2] Gregory SG, Barlow KF, Mclay KE, et al. The DNA sequence and biological annotation of human chromosome 1[J] . Nature, 2006, 441(7091):315-321. [3] Muzny DM, Scherer SE, Kaul R, et al. The DNA sequence, annotation and analysis of human chromosome 3[J] . Nature, 2006, 440(7088):1194-1198. [4] Yu J, Hu SN, Wang J, et al. A draft sequence of the rice genome(Oryza sativa L. ssp indica)[J] . Science, 2002, 296(5565):79-92. [5] Kruger M, Moser M, Ussar S, et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function[J] . Cell, 2008, 134(2):353-364. [6] Egertson JD, Kuehn A, Merrihew GE, et al. Multiplexed MS/MS for improved data-independent acquisition[J] . Nature Methods, 2013, 10(8):744-746. [7] Ting L, Rad R, Gygi SP, et al. MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics[J] . Nature Methods, 2011, 8(11):937-940. [8] Marouga R, David S, Hawkins E. The development of the DIGE system:2D fluorescence difference gel analysis technology[J] . Analytical and Bioanalytical Chemistry, 2005, 382(3):669-678. [9] Wu WW, Wang GH, Baek SJ, et al. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF[J] . Journal of Proteome Research, 2006, 5(3):651-658. [10] Boersema PJ, Raijmakers R, Lemeer S, et al. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics[J] . Nature Protocols, 2009, 4(4):484-494. [11] Levin Y, Schwarz E, Wang L, et al. Label-free LC-MS/MS quantita-tive proteomics for large-scale biomarker discovery in complex samples[J] . Journal of Separation Science, 2007, 30(14):2198-2203. [12] Chahrour O, Cobice D, Malone J. Stable isotope labelling methods in mass spectrometry-based quantitative-proteomics[J] . Journal of Pharmaceutical and Biomedical Analysis, 2015, 113:2-20. [13] Washburn MP, Wolters D, Yates JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology[J] . Nature Biotechnology, 2001, 19(3):242-247. [14] Gao J, Friedrichs MS, Dongre AR, et al. Guidelines for the routine application of the peptide hits technique[J] . J Am Soc Mass Spectrom, 2005, 16(8):1231-1238. [15] Griffin NM, Yu J, Long F, et al. Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis[J] . Nat Biotechnol, 2010, 28(1):83-89. [16] Zhang Y, Wen Z, Washburn MP, et al. Improving label-free quantitative proteomics strategies by distributing shared peptides and stabilizing variance[J] . Analytical Chemistry, 2015, 87(9):4749-4756. [17] Chelius D, Bondarenko, PV. Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry[J] . J Proteome Res, 2002, 1(4):317-323. [18] Silva JC, Gorenstein MV, Li GZ, et al. Absolute quantification of proteins by LCMSE-A virtue of parallel MS acquisition[J] . Molecular & Cellular Proteomics, 2006, 5(1):144-156. [19] Grossmann J, Roschitzki B, Panse C, et al. Implementation and evaluation of relative and absolute quantification in shotgun proteomics with label-free methods[J] . Journal of Proteomics, 2010, 73(9):1740-1746. [20] Choi H, Glatter T, Gstaiger M, et al. SAINT-MS1:Protein-protein interaction scoring using label-free intensity data in affinity purification-mass spectrometry experiments[J] . Journal of Proteome Research, 2012, 11(4):2619-2624. [21] Choi H, Kim S, Fermin D, et al. QPROT:Statistical method for testing differential expression using protein-level intensity data in label-free quantitative proteomics[J] . J Proteomics, 2015, 129:121-126. [22] Van Riper SK, Higgins L, Carlis JV, et al. RIPPER:a framework for MS1 only metabolomics and proteomics label-free relative quantification[J] . Bioinformatics, 2016, 32(13):2035-2037. [23] 钱小红. 定量蛋白质组学分析方法[J] . 色谱, 2013(8):719-723. [24] Ong SE, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics[J] . Molecular & Cellular Proteomics, 2002, 1(5):376-386. [25] Bicho CC, Alves FD, Chen ZA, et al. A genetic engineering solution to the “arginine conversion problem” in stable isotope labeling by amino acids in cell culture(SILAC)[J] . Molecular & Cellular Proteomics, 2010, 9(7):1567-1577. [26] Neubert TA, Tempst P. Super-SILAC for tumors and tissues[J] . Nat Methods, 2010, 7(5):361-362. [27] Hebert AS, Merrill AE, Bailey DJ, et al. Neutron-encoded mass signatures for multiplexed proteome quantification[J] . Nat Methods, 2013, 10(4):332-334. [28] Xudong Yao AF, Javier Ramirez, Plamen A. Demirev, and Catherine Fenselau. Proteolytic 18O labeling for comparative proteomics:model studies with two serotypes of adenovirus[J] . Analchem, 2001, 73(13):7. [29] Zhao Y, Jia W, Sun W, et al. Combination of improved 18O incorporation and multiple reaction monitoring:a universal strategy for absolute quantitative verification of serum candidate biomarkers of liver cancer[J] . J Proteome Res, 2010, 9(6):3319-3327. [30] Modzel M, Plociennik H, Kielmas M, et al. A synthesis of new, bi-labeled peptides for quantitative proteomics[J] . J Proteomics, 2015, 115:1-7. [31] 颜辉. 金属标记结合生物质谱的蛋白质组相对定量及绝对定量新方法研究[D] . 合肥:安徽医科大学, 2014. [32] Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. [J] . Nat Biotechnol, 1999, 17(10):6. [33] Hsu J L, Huang SY, Chow NH, et al. Stable-isotope dimethyl labeling for quantitative proteomics[J] . Analytical Chemistry, 2003, 75(24):6843-6852. [34] Wu Y, Wang F, Liu Z, et al. Five-plex isotope dimethyl labeling for quantitative proteomics[J] . Chem Commun(Camb), 2014, 50(14):1708-1710. [35] Ross PL, Huang YN, Marchese JN, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents[J] . Mol Cell Proteomics, 2004, 3(12):1154-1169. [36] Andrew Thompson J, 1rgen Schagunter KK, Stefan Kienle, Josef Schwarz, , 1nter Schmidt TN, And Christian Hamon. Tandem mass tags:A novel quantification strategy for comparative analysis of complex protein mixtures by MS MS[J] . Analchem, 2003, 75(8):10. [37] Werner T, Sweetman G, Savitski MF, et al. Ion Coalescence of neutron encoded TMT 10-plex reporter Ions[J] . Analytical Chemistry, 2014, 86(7):3594-3601. [38] Dephoure N, Gygi SP. Hyperplexing:a method for higher-order multiplexed quantitative proteomics provides a map of the dynamic response to rapamycin in yeast[J] . Sci Signal, 2012, 5(217):9. [39] Wojdyla K, Williamson J, Roepstorff P, et al. The SNO/SOH TMT strategy for combinatorial analysis of reversible cysteine oxidations[J] . Journal of Proteomics, 2015, 113:415-434. [40] Zhang Z, Yang XY, Mirokhin YA, et al. Interconversion of peptide mass spectral libraries derivatized with iTRAQ or TMT labels[J] . Journal of Proteome Research, 2016, 15(9):3180-3187. [41] Dayon L, Sonderegger B, Kussmann M. Combination of gas-phase fractionation and MS3 acquisition modes for relative protein quantification with isobaric tagging[J] . Journal of Proteome Research, 2012, 11(10):5081-5089. [42] Mcalister GC, Nusinow DP, Jedrychowski MP, et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes[J] . Analytical Chemistry, 2014, 86(14):7150-7158. [43] Searle BC, Egertson JD, Bollinger JG, et al. Using data independent acquisition(DIA)to model high-responding peptides for targeted proteomics experiments[J] . Molecular & Cellular Proteomics, 2015, 14(9):2331-2340. [44] Domanski D, Percy AJ, Yang J, et al. MRM-based multiplexed quantitation of 67 putative cardiovascular disease biomarkers in human plasma[J] . Proteomics, 2012, 12(8):1222-1243. [45] Whiteaker JR, Zhao L, Anderson L, et al. An automated and multiplexed method for high throughput peptide immunoaffinity enrichment and multiple reaction monitoring mass spectrometry-based quantification of protein biomarkers[J] . Molecular & Cellular Proteomics, 2010, 9(1):184-196. [46] Gerber SA, Rush J, Stemman O, et al. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS[J] . Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(12):6940-6945. [47] Kim HJ, Lin D, Lee HJ, et al. Quantitative profiling of protein tyrosine kinases in human cancer cell lines by multiplexed parallel reaction monitoring assays[J] . Molecular & Cellular Proteomics, 2016, 15(2):682-691. [48] Ronsein GE, Pamir N, Von Haller PD, et al. Parallel reaction monitoring(PRM)and selected reaction monitoring(SRM)exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics[J] . Journal of Proteomics, 2015, 113:388-399. [49] Gallien S, Kim SY, Domon B. Large-Scale targeted proteomics using internal standard triggered-parallel reaction monitoring(IS-PRM)[J] . Molecular & Cellular Proteomics, 2015, 14(6):1630-1644. [50] Law KP, Lim YP. Recent advances in mass spectrometry:data independent analysis and hyper reaction monitoring[J] . Expert Review of Proteomics, 2013, 10(6):551-566. [51] Egertson JD, Maclean B, Johnson R, et al. Multiplexed peptide analysis using data-independent acquisition and Skyline[J] . Nature Protocols, 2015, 10(6):887-903. [52] Zhong LJ, Li Y, Tian HF, et al. Data-independent acquisition strategy for the serum proteomics of tuberculosis[J] . International Journal of Clinical and Experimental Pathology, 2017, 10(2):1172-1185. [53] Muntel J, Xuan Y, Berger ST, et al. Advancing urinary protein biomarker discovery by data-independent acquisition on a quadrupole-orbitrap mass spectrometer[J] . Journal of Proteome Research, 2015, 14(11):4752-4762. [54] Gillet LC, Navarro P, Tate S, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition:A new concept for consistent and accurate proteome analysis[J] . Molecular & Cellular Proteomics, 2012, 11(6):17. [55] Ortea I, Rodriguez-Ariza A, Chicano-Galvez E, et al. Discovery of potential protein biomarkers of lung adenocarcinoma in bronchoalveolar lavage fluid by SWATH MS data-independent acquisition and targeted data extraction[J] . Journal of Proteomics, 2016, 138:106-114. [56] Tsou CC, Avtonomov D, Larsen B, et al. DIA-Umpire:comprehensive computational framework for data-independent acquisition proteomics[J] . Nature Methods, 2015, 12(3):258-264. [57] 甄艳李, 施季森. 磷酸化蛋白质组定量研究策略. [J] . 分子植物育种, 2014, 12(3):7. [58] Mertins P, Udeshi ND, Clauser KR, et al. iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics[J] . Molecular & Cellular Proteomics, 2012, 11(6):12. [59] Piovesana S, Capriotti AL, Cavaliere C, et al. New magnetic graphitized carbon black TiO2 composite for phosphopeptide selective enrichment in shotgun phosphoproteomics[J] . Analytical Chemistry, 2016, 88(24):12043-12050. [60] Song C, Ye M, Liu Z, et al. Systematic Analysis of protein phosphorylation networks from phosphoproteomic data[J] . Molecular & Cellular Proteomics, 2012, 11(10):1070-1083. [61] 阮班军, 代鹏, 王伟, 等. 蛋白质翻译后修饰研究进展 [J] . 中国细胞生物学学报, 2014, 36(7):1027-1037. [62] Scholz C, Weinert BT, Wagner SA, et al. Acetylation site specificities of lysine deacetylase inhibitors in human cells[J] . Nature Biotechnology, 2015, 33(4):415-136. [63] Yang L, Vaitheesvaran B, Hartil K, et al. The Fasted/Fed mouse metabolic acetylome:N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching[J] . Journal of Proteome Research, 2011, 10(9):4134-4149. [64] Zhang K, Zheng S, Yang JS, et al. Comprehensive profiling of protein lysine acetylation in Escherichia coli[J] . Journal of Proteome Research, 2013, 12(2):844-851. [65] Lu L, Li D, He FC. Bioinformatics advances in protein ubiquitina-tion[J] . Hereditas(Beijing), 2013, 35(1):17-26. [66] Cai B, Jiang X. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences[J] . Bmc Bioinformatics, 2016, 17:116. [67] Akimov V, Rigbolt KTG, Nielsen MM, et al. Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics[J] . Molecular Biosystems, 2011, 7(12):3223-3233. [68] Meng Q, Rao L, Pan Y. Enrichment and analysis of rice seedling ubiquitin-related proteins using four UBA domains(GST-qUBAs)[J] . Plant Science An International Journal of Experimental Plant Biology, 2014, 229:172-180. [69] 包慧敏, 谢力琦, 陆豪杰. 糖蛋白质组学中基于化学反应的富集方法研究进展[J] . 色谱, 2016(12):1145-1153. [70] 张伟. 基于生物质谱的蛋白质N-糖基化定性与定量新技术[D] . 上海:复旦大学, 2012. [71] Hashii N, Kawasaki N, Itoh S, et al. Alteration of N-glycosylation in the kidney in a mouse model of systemic lupus erythematosus:relative quantification of N-glycans using an isotope-tagging method[J] . Immunology, 2009, 126(3):336-345. [72] Ahn YH, Shin PM, Kim YS, et al. Quantitative analysis of aberrant protein glycosylation in liver cancer plasma by AAL-enrichment and MRM mass spectrometry[J] . Analyst, 2013, 138(21):6454-6462. [73] Cox J, Neuhauser N, Michalski A, et al. Andromeda:a peptide search engine integrated into the MaxQuant environment[J] . Journal of Proteome Research, 2011, 10(4):1794-1805. [74] Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics[J] . Nature Protocols, 2016, 11(12):2301-2319. [75] Brosch M, Yu L, Hubbard T, et al. Accurate and sensitive peptide identification with mascot percolator[J] . Journal of Proteome Research, 2009, 8(6):3176-3181. [76] Wright JC, Collins MO, Yu L, et al. Enhanced peptide identification by electron transfer dissociation using an improved mascot percolator[J] . Molecular & Cellular Proteomics, 2012, 11(8):478-491. [77] Yang PY, Ma J, Wang PH, et al. Improving X! Tandem on peptide identification from mass spectrometry by self-boosted percolator[J] . Ieee-Acm Transactions on Computational Biology and Bioinformatics, 2012, 9(5):1273-1280. [78] Dasari S, Chambers MC, Martinez MA, et al. Pepitome:evaluating improved spectral library search for identification complementarity and quality assessment[J] . Journal of Proteome Research, 2012, 11(3):1686-1695. [79] Lam H, Deutsch EW, Eddes JS, et al. Development and validation of a spectral library searching method for peptide identification from MS/MS[J] . Proteomics, 2007, 7(5):655-667. [80] Maclean B, Tomazela DM, Shulman N, et al. Skyline:an open source document editor for creating and analyzing targeted proteomics experiments[J] . Bioinformatics, 2010, 26(7):966-968. [81] Bruderer R, Bernhardt OM, Gandhi T, et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues[J] . Molecular & Cellular Proteomics, 2015, 14(5):1400-1410. [82] Mann M. Functional and quantitative proteomics using SILAC[J] . Nature Reviews Molecular Cell Biology, 2006, 7(12):952-958. [83] Werner T, Becher I, Sweetman G, et al. High-resolution enabled TMT 8-plexing[J] . Analytical Chemistry, 2012, 84(16):7188-7194. [84] Pichler P, Koecher T, Holzmann J, et al. Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ orbitrap[J] . Analytical Chemistry, 2010, 82(15):6549-6558. [85] Neilson KA, Ali NA, Muralidharan S, et al. Less label, more free:Approaches in label-free quantitative mass spectrometry[J] . Proteomics, 2011, 11(4):535-553. [86] Collins BC, Gillet LC, Rosenberger G, et al. Quantifying protein interaction dynamics by SWATH mass spectrometry:application to the 14-3-3 system[J] . Nature Methods, 2013, 10(12):1246-1253. |
[1] | ZHANG Xiao-yan, YANG Shu-hua, DING Yang-lin. Molecular Mechanism of Cold Signal Perception and Transduction in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 28-35. |
[2] | ZHOU Heng, XIE Yan-jie. Recent Progress in Oxidative Stress Signaling and Response in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 36-43. |
[3] | LAN Xin-yue, LIU Ning-ning, ZHU Long-jiao, CHEN Xu, CHU Hua-shuo, LI Xiang-yang, DUAN Nuo, XU Wen-tao. Tetracycline Bivalent Aptamer Non-enzyme Label-free Sensor [J]. Biotechnology Bulletin, 2022, 38(3): 276-284. |
[4] | JIA Hai-hong, LI Bing-qing. Research Progress in the Post-translational Modification of Superoxide Dismutase [J]. Biotechnology Bulletin, 2022, 38(2): 237-244. |
[5] | LIU Jing, LI Ya-chao, ZHOU Meng-yan, WU Peng-fei, MA Xiang-qing, LI Ming. Advances in the Studies of Plant Protein Post-translational Modification [J]. Biotechnology Bulletin, 2021, 37(1): 67-76. |
[6] | WANG Yong-ping, REN Wei, WANG Run-juan, SHAO Kun-zhong, GAO Hui-juan, ZHANG Jin-lin. Research Advances on Functions of SUMO E3 Ligase in Plant Abiotic Stress Adaptation [J]. Biotechnology Bulletin, 2020, 36(2): 169-177. |
[7] | ZHANG Liang, CHEN Xiao-qing, SONG Jia-yu, MAO Ran-ran, JIANG Qian-wen, LIN Xiang-min. Comparative Proteomics Analysis of Escherichia coli in Response to Barofloxacin Stress [J]. Biotechnology Bulletin, 2019, 35(3): 103-109. |
[8] | XIAO Bing, LIU Bang, LUO Yun-bo, HUANG Kun-lun, ZHANG Yuan, LI Xia-ying, ZHANG Xiu-jie, XU Wen-tao, ZHOU Xiang. Research Progress in Quantitative and Unitive Detecting Technologies of Functional Nucleic Acid and Label-Free Fluorescence [J]. Biotechnology Bulletin, 2019, 35(3): 194-202. |
[9] | LI Yan-wei, SONG Xing-hui, WANG Jia-jia, LIU Li, HUANG Ying-ying, GUO Chun. Establishment of the Real-time and Label-free Screening System for Tumor Cell Apoptosis [J]. Biotechnology Bulletin, 2019, 35(10): 220-226. |
[10] | ZHOU Wen-fei, BAI Juan ,GONG Chun-mei. Research Progress on the Oxidative Modification of Plant Proteins Mediated by Reactive Oxygen Species [J]. Biotechnology Bulletin, 2017, 33(4): 8-18. |
[11] | LU Zeng-kui,MA You-ji,. Application Advances of Quantitative Proteomics in the Studies of Animal Testis Protein [J]. Biotechnology Bulletin, 2016, 32(12): 8-12. |
[12] | Jiang Nan, Pan Xuefeng. The Developments of Epigenetics and Epigenetics-based Modern Biomedicine and Pharmaceutics [J]. Biotechnology Bulletin, 2015, 31(4): 105-119. |
[13] | Huang Yu,Feng Jing,Rao Liqun,Xu Shichang,Pan Yinghong. Label-free Quantitative Proteomics Analysis of a Wheat Near-isogenic Line Pair with Q Exactive Mass Spectrometer [J]. Biotechnology Bulletin, 2014, 0(6): 88-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||