Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (10): 18-25.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0317
• Orginal Article • Previous Articles Next Articles
ZHAO Yan-kun1, LIU Hui-min2, WANG Shuai1, CAI Jian-xing1, WANG Cheng1, CHEN He1
Received:
2018-02-01
Online:
2018-10-26
Published:
2018-11-07
ZHAO Yan-kun, LIU Hui-min, WANG Shuai, CAI Jian-xing, WANG Cheng, CHEN He. Research Progress on Drug Resistance of Staphylococcus aureus in Bovine Mastitis[J]. Biotechnology Bulletin, 2018, 34(10): 18-25.
[1] Talbot BG, Lacasse P.Progress in the development of mastistis vaccine[J]. Liverst Prod Sci, 2005, 98(1/2):103-113. [2] Sinha B, Fraunholz M.Staphylococcus aureus host cell invasion and post-invasion events[J]. Int J Med Microbiol, 2010, 300(2-3):170-175. [3] Hiramatsu K, Katayama Y, Yuzawa H, et al.Molecular genetics of methicillin-resistant Staphylococcus aureus[J]. J Med Microbiol, 2002, 292(2):67-74. [4] Chao GX, Bao GY, Jiao XN.Molecular epidemiological characteri-stics and clonal genetic diversity of Staphylococcuss aureus with different origins in China[J]. Foodborne Pathog Dis, 2014, 11(7):503-510. [5] 张月. 河北省不同地区奶牛乳房炎主要病原菌的分离鉴定和耐药性研究[D]. 保定:河北农业大学, 2015. [6] 汪复, 朱德妹, 胡付品, 等. 2012年中国CHINET细菌耐药性监测[J]. 中国感染与化疗杂志, 2013(5):321-330. [7] 朱俊泰, 刘宗英, 李卓荣. 抗耐药菌药物研究进展[J]. 中国医药生物技术, 2015, 10(2):161-166. [8] 王瑞兰. 细菌耐药性产生的原因及对细菌耐药性应采取的对策[J]. 现代中西医结合杂志, 2006(15):2077-2078. [9] Deurenberg RH, Kalenic CS, Friedrich W, et al.The molecular evolution of methicillin-resistant Staphylococcus aureus[J]. Clin Microbiol Infec, 2007, 13:222-235. [10] Devriese LA, Hommez J.Epidemiology of methicillin-resistant Staphylococcus aureus in dairy herds[J]. Res Vet Sci, 1975, 19:23-27. [11] Kumar R, Yadav BR, Singh RS.Antibiotic resistance and pathogenicity factors in Staphylococcus aureus isolated from mastitic Sahiwal cattle[J]. J Biosci Bioeng. 2011, 1:175-188. [12] Oliveira L, et al.Minimum inhibitory concentrations of Staphyloco-ccus aureus recovered from clinical and subclinical cases of bovine mastitis[J]. J Dairy Sci, 2012, 95(4):1913-1920. [13] Kateete DP, Kabugo U, Baluku H.et al.Prevalence and antimicrobial susceptibility patterns of bacteria from milkmen and cows with clinical mastitis in and around Kampala, Uganda[J]. PLoS, 2013, 8(5):e63413. [14] Szweda P, Schielmann M, Frankowska A, et al.Antibiotic resistance in Staphylococcus aureus strains isolated from cows with mastitis in eastern Poland and analysis of susceptibility of resistant strains to alternative nonantibiotic agents:lysostaphin, nisin and polymyxin B[J]. J Vet Med Sci, 2014, 76(3):355-362. [15] Rola JG, Korpysa-dzirba W, Czubkowska A. et al. Prevalence of enterotoxin genes and antimicrobial resistance of coagulase-positive staphylococci recovered from raw cow milk[J]. J Dairy Sci, 2015, 98(7):4273-4278. [16] Aslantas Ö, Demir C.Investigation of the antibiotic resistance and biofilm-forming ability of Staphylococcus aureus from subclinical bovine mastitis cases[J]. J Dairy Sci, 2016, 11:8607-8613. [17] Seedy FRE, Samy AA, Salam HSH.et al.Polymerase chain reaction detection of genes responsible for multiple antibiotic resistance Staphylococcus aureus isolated from food of animal origin in Egypt[J]. WVC. 2017, 10(10):1205-1211. [18] Obaidat MM, Bani Salman AE, ROESS AA.High prevalence and antimicrobial resistance of mecA Staphylococcus aureus in dairy cattle, sheep, and goat bulk tank milk in Jordan[J]. Trop Anim Health Pro. 2018, 50(2):405-412. [19] Seyoum B, Kefyalew H, et al.Prevalence, risk factors and antimic-robial susceptibility test of Staphylococcus aureus in Bovine cross breed mastitic milk in and around Asella town, Oromia regional state, southern Ethiopia[J]. Acta Trop, 2018, 177:32-36. [20] 高攀. 新疆奶牛乳房炎病例中金黄色葡萄球菌耐药性、血清型调查和乳头灌注治疗实验[D]. 乌鲁木齐:新疆农业大学, 2013. [21] 冯小慧, 杜琳, 胡泽光. 等. 2017年内蒙古部分地区奶牛乳房炎金黄色葡萄球菌分离鉴定及耐药性分析[J]. 畜牧与饲料科学, 2017, 38(9):7-9. [22] 王洪海, 王海霞, 姚伟红. 大庆地区奶牛隐性乳腺炎流行病学调查和主要致病菌的分离鉴定[J]. 现代畜牧科技, 2017, 4(28):9-12. [23] 杨慧君. 宁夏地区牛源金黄色葡萄球菌毒力基因检测及耐药性研究[D]. 银川:宁夏大学, 2016. [24] 高海慧. 陕西某奶牛场隐性乳房炎的调查与病原菌分离鉴定及药敏试验[D]. 杨凌:西北农林科技大学, 2014. [25] 凡琴, 刘书亮, 吴聪明. 牛乳源金黄色葡萄球菌耐药性变迁及β-内酰胺类药物耐药基因分析[J]. 食品科学, 2015, 36(3):147-151. [26] 田晓英, 王军, 于忠娜. 等. 天津地区乳房炎奶样中金黄色葡萄球菌耐药性研究[J]. 现代食品科技, 2017, 33(10):1-10. [27] 王登峰. 奶牛乳腺炎性金黄色葡萄球菌耐药基因检测、分子分型和耐甲氧西林菌株全基因组测序[D]. 北京:中国农业大学, 2016. [28] 高潮, 刘国庆, 赵莉莉. 等. 上海地区奶牛乳房炎金黄色葡萄球菌基因分型与耐药性研究[J]. 上海交通大学学报:农业科学版, 2014, 32(1):53-58. [29] Fluit AC, et al.Molecular detection of antimicrobial resistance[J]. Clin Microbiol Rev, 2001, 14(4):836-871. [30] Lindsay JA.Staphylococcus aureus genomics and the impact of horizontal gene transfer[J]. Int J Med Microbiol. 2014, 2:103-109. [31] 许顺姬, 许东哲. 耐甲氧西林金黄色葡萄球菌中mecA/femA检测及其抗菌药物敏感性研究[J]. 现代预防医学, 2013, 40(30):531-532. [32] Kim CK, et al.Antibiotic resistance as a stress response:recovery of high-level oxacillin resistance in methicillin-resistant Staphylo-coccus aureus “Auxiliary”(fem)mutants by induction of the stringent stress response[J]. Antimicrob Agents Chemother. 2017, 61(8):e00313-00317. [33] 万艳红. 耐甲氧西林金黄色葡萄球菌表型与基因分型分析研究[D]. 青岛:青岛大学, 2014. [34] 闫虹. 耐甲氧西林金黄色葡萄球菌耐药性及其分型研究[D]. 郑州:郑州大学, 2015. [35] 安慧慧. 牛源金黄色葡萄球菌耐药性分析及氟喹诺酮类耐药基因检测[D]. 银川:宁夏大学, 2014. [36] Ladant D, Karimova G.Genetic systems for analyzing protein-protein interactions in bacteria[J]. Res Microbiol, 2000, 151(9):711-720. [37] Katayama Y, Zhang HZ, Chambers HF.Effect of disruption of Staphylococcus aureus PBP4 gene on resistance to beta-lactam antibiotics[J]. Res Microbiol Drug Resis, 2003, 4:329-336. [38] Fritsche TR, et al.Antimicrobial activity of tigecycline(GAR-936) tested against 3498 recent isolates of Staphylococcus aureus recove-red from nosocomial and community-acquired infections[J]. Antimicrob Agents Chemother, 2004, 24:567-571. [39] Martini CL, Lange CC, Brito MA.et al.Characterisation of penicillin and tetracycline resistance in Staphylococcus aureus isolated from bovine milk samples in Minas Gerais Brazil[J]. J Dairy Res, 2017, 84(2):202-205. [40] 袁梦, 袁月明, 刘楚云, 等. 金黄色葡萄球菌氨基糖苷类耐药相关基因检测[J]. 现代预防医学, 2013(9):1718-1723. [41] Wang DF, Wang ZC, Yan ZT et al Bovine mastitis Staphylococcus aureus:antibiotic susceptibility profile resistance genes and molecular typing of methicillin-resistant and methicillin-sensitive strains in China[J]. Infect Genet Evol, 2015, 31:9-16. [42] Turutoglu H, Hasoksuz M, Ozturk D.et al.Methicillin and aminoglycoside resistance in Staphylococcus aureus isolates from bovine mastitis and sequence analysis of their mecA genes[J]. Vet Res Commun, 2009, 33(8):945-956. [43] 徐佳. 奶牛乳腺炎葡萄球菌种类、毒力基因及抗性基因与耐药性的调查分析[D]. 扬州:扬州大学, 2016. [44] Crossman LC, Gould VC, et al.The complete genome, comparative and functional analysis of Staphylococcus aureus(S. aureus)altophilia reveals an organi S. aureus heavily shielded by drug resistance determinants[J]. Genome Biol, 2008, 9(4):R74. [45] Reynolds E, Cove JH.Enhanced resistance to erythromycin is conferred by the enterococcal msrC determinant in Staphylococcus aureus[J]. J Antimicrob Chemoth, 2005, 55(2):260-264. [46] Dimodugno V, Guerrini M, Shah S.Low level Resistance to oleandomycin as a marker of ermA in staphylococci[J]. J Antimicrobl Chemoth, 2002, 49(2):425-427. [47] Prunier AL, Trong HN, Tande D, et al.Mutation of L4 ribosomal protein conferring unusual maerolide resistance in two independent clinical isolates of Staphylococcus aureus[J]. Microb Drug Resist, 2005, 11(1):18-21. [48] Elinor R, Jonathan HC.Enhanced resistance to erythromycin is conferred by the enterococcal msrC determinant in Staphylococcus aureus[J]. J Antimicrob Chemoth, 2005, 55(2):260-264. [49] Kot B, Piechota M, Wolska KM.et al.Phenotypic and genotypic antimicrobial resistance of staphylococci from bovine milk[J]. Pol J Vet Sci, 2012, 15(4):677-683. [50] Resende JA, Fontes CO, et al.Antimicrobial-resistance genetic markers in potentially pathogenic gram positive cocci isolated from Brazilian soft cheese[J]. J Food Sci, 2018, 83(2):377-385. [51] Cheng J, Thanassi JA, Thoma CL, et al.Dual targeting of DNA gyrase and topoisomerase IV:Target Interactions of heteroaryl isothiazolones in Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2007, 51(7):2445. [52] 李晓娜, 安慧慧, 余婷. 等. 奶牛乳房炎金黄色葡萄球菌耐氟喹诺酮类基因的检测[J]. 动物医学进展, 2015(3):41-44. [53] 苗贝贝, 杨晓涵, 梁蓓蓓, 等. 3种喹诺酮类药物对金黄色葡萄球菌及其耐药突变体的体外抗菌活性研究[J]. 中国药学杂志, 2017, 52(14):1241-1245. [54] Horváth A, Dobay O, Kardos S.et al.Varying fitness cost associated with resistance to fluoroquinolones governs clonal dynamic of methicillin-resistant Staphylococcus aureus[J]. Eur J Clin Microbiol&Infect Dis, 2012, 31(8):2029-2036. [55] Chen X, Zhang WQ, Pan WJ.et al.Prevalence of qnr, aac6’-Ib-cr, qepA, and oqxA/B in Escherichia coli isolates from humans, animals, and the environment[J]. Antimicrob Agents Chemother, 2012, 56(6):3423-3427. [56] Santos CS, Viveiros M, Rosato AE.et al.Impact of efflux in the development of multidrug resistance phenotypes in Staphylococcus aureus[J]. BMC Microbiol, 2015, 24(15):232. |
[1] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[2] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[3] | CHEN Yong, LI Ya-xin, WANG Ya-xuan, LIANG Lu-jie, FENG Si-yuan, Tian Guo-bao. Research Progress in the Molecular Mechanism of MCR-1 Mediated Polymyxin Resistance [J]. Biotechnology Bulletin, 2023, 39(6): 102-108. |
[4] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[5] | QI Fang-ting, HUANG He. Research Advance in the Regulation Mechanism of Flower Spots Formation in Ornamental Plant [J]. Biotechnology Bulletin, 2023, 39(10): 17-28. |
[6] | JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor [J]. Biotechnology Bulletin, 2023, 39(1): 84-94. |
[7] | LI Hai-li, LANG Li-min, ZHANG Qing-xian, YOU Yi, ZHU Wen-hao, WANG Zhi-fang, ZHANG Li-xian, WANG Ke-ling. Identification and Drug Resistance of Escherichia coli Simultaneously Producing Carbapenemase NDM-1 and NDM-5 [J]. Biotechnology Bulletin, 2022, 38(9): 106-115. |
[8] | LIU Xiao-li, TONG Zhen-yi, ZHAO Liang, YIN Li, LIU Chen-guang. Research Progress in Non-antibiotic Active Substances Against Helicobacter pylori [J]. Biotechnology Bulletin, 2022, 38(9): 96-105. |
[9] | LIU Zi-ran, ZHEN Zhen, CHEN Qiang, LI Yue-ying, WANG Ze, PANG Hong-bo. Research Progress in Plant Response to Cd Stress [J]. Biotechnology Bulletin, 2022, 38(6): 13-26. |
[10] | CHEN Fu-nuan, HUANG Yu, CAI Jia, WANG Zhong-liang, JIAN Ji-chang, WANG Bei. Structure of ABC Transporter and Research Progress of It in Bacterial Pathogenicity [J]. Biotechnology Bulletin, 2022, 38(6): 43-52. |
[11] | ZHU Hao, ZHANG Yan-wei, LIU Run, LIANG Yan, YANG Yi, XU Tian-le, YANG Zhang-ping. Research Progress in Antibiotic Adjuvant and Antibiotics in Antibacterial Aspects [J]. Biotechnology Bulletin, 2022, 38(6): 66-73. |
[12] | LEI Chun-xia, LI Can-hui, CHEN Yong-kun, GONG Ming. Physiological and Biochemical Basis and Molecular Mechanism of Solanum tuberosum Tuberization [J]. Biotechnology Bulletin, 2022, 38(4): 44-57. |
[13] | LI Qian, JIANG Wen-bo, WANG Yu-xiang, ZHANG Bo, PANG Yong-zhen. Research Progresses on the Drought Resistance of Medicago at Molecular Level [J]. Biotechnology Bulletin, 2021, 37(8): 243-252. |
[14] | LIU Hai-guang, LUO Zhen, DONG He-zhong. Research Progress on the Regulation of NO3- Uptake and Transport in Plant [J]. Biotechnology Bulletin, 2021, 37(6): 192-201. |
[15] | FENG Lian-jie, AN Wen-jing, LIU Di, LIU Ya-fei, WANG Kai-jie, LIANG Wei-hong. Progress in Research of Rice Trichome Related Genes [J]. Biotechnology Bulletin, 2021, 37(6): 236-243. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||