[1] Chen GQ.A microbial polyhydroxyalkanoates(PHA)based bio- and materials industry[J]. Chemical Society Reviews, 2009, 38(8):2434-2446.
[2] Gangoiti J, Santos M, Llama MJ, et al.Production of Chiral(R)-3-Hydroxyoctanoic Acid Monomers, Catalyzed by Pseudomonas fluorescens GK13 Poly(3-Hydroxyoctanoic Acid)Depolymerase[J]. Applied & Environmental Microbiology, 2010, 76(11):3554-3560.
[3] Zhang X, Luo R, Wang Z, et al.Application of(R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuels[J]. Biomacromolecules, 2009, 10(4):707-711.
[4] Boerjan W, Ralph J, Baucher M.Lignin biosynthesis[J]. Annual Review of Plant Biology, 2003, 54(1):519-546.
[5] Himmel ME, Ding SY, Johnson DK, et al.Biomass recalcitrance:engineering plants and enzymes for biofuels production[J]. Science, 2007, 315(5813):804-807.
[6] Chundawat SP, Beckham GT, Himmel ME, et al.Deconstruction of lignocellulosic biomass to fuels and chemicals[J]. Annual Review of Chemical & Biomolecular Engineering, 2011, 2(2):121-145.
[7] Tuck CO, Perez E, Horvath IT, et al.Valorization of biomass:deriving more value from waste[J]. Science, 2012, 337(6095):695-699.
[8] Ragauskas AJ, Beckham GT, Biddy MJ, et al.Lignin valorization:improving lignin processing in the biorefinery[J]. Science, 2014, 344(6185):1246843.
[9] Kirk TK, Farrell RL.Enzymatic “combustion”:the microbial degradation of lignin[J]. Annual review of microbiology, 1987, 41(1):465-505.
[10] Zakzeski J, Bruijnincx PCA, Jongerius AL, et al.The catalytic valorization of lignin for the production of renewable chemicals[J]. Chemical Reviews, 2010, 110(6):3552-3559.
[11] Floudas D, Binder M, Riley R, et al.The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes[J]. Science, 2012, 336(6089):1715-1719.
[12] Dixon RA.Microbiology:Break down the walls[J]. Nature, 2013, 493(7430):36-37.
[13] Linger JG, Vardon DR, Guarnieri MT, et al.Lignin valorization through integrated biological funneling and chemical catalysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(33):12013-12018.
[14] Salvachua D, Karp EM, Nimlos CT, et al.Towards lignin consolidated bioprocessing:simultaneous lignin depolymerization and product generation by bacteria[J]. Green Chemistry, 2015, 17(11):4951-4967.
[15] Lin L, Cheng Y, Pu Y, et al.Systems biology-guided biodesign of consolidated lignin conversion[J]. Green Chem, 2016(18):5536-5547.
[16] Mcleod MP, Warren RL, Hsiao WWL, et al.The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse[J]. Proceedings of the National Academy of Sciences, 2006, 103(42):15582-15587.
[17] Wang JP, Wu LX, Xu F, et al.Metabolic engineering for ethylene production by inserting the ethylene-forming enzyme gene(efe)at the 16S rDNA sites of Pseudomonas putida KT2440[J]. Bioresource Technology, 2010, 101(16):6404-6409.
[18] Ahmad M, Roberts JN, Hardiman EM, et al.Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase[J]. Biochemistry, 2011, 50(23):5096-5107.
[19] Vardon DR, Franden MA, Johnson CW, et al.Adipic acid production from lignin[J]. Energy & Environmental Science, 2015, 8(2):617-628.
[20] Nelson KE, Weinel C, Paulsen IT, et al.Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440[J]. Environmental Microbiology, 2002, 4(12):799-808.
[21] De-Eugenio LI, Garcia P, Luengo JM, et al.Biochemical evidence that phaZ gene encodes a specific intracellular medium chain length polyhydroxyalkanoate depolymerase in Pseudomonas putida KT2442:characterization of a paradigmatic enzyme[J]. J Biol Chem, 2007, 282(7):4951-4962.
[22] Laura Isabel DE, Escapa IF, Valle M, et al.The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance[J]. Environmental Microbiology, 2010, 12(1):207-221. |